import cv2
from paddleocr import PaddleOCR
import os
from matplotlib import pyplot as plt
def Morph_Distinguish(img):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17, 17))
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, kernel)
y = cv2.Sobel(tophat, cv2.CV_16S, 1, 0)
absY = cv2.convertScaleAbs(y)
ret, binary = cv2.threshold(absY, 75, 255, cv2.THRESH_BINARY)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 15))
Open = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (41, 15))
close = cv2.morphologyEx(Open, cv2.MORPH_CLOSE, kernel)
# 中远距离车牌识别
kernel_x = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 7))
kernel_y = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 11))
# 近距离车牌识别
# kernel_x = cv2.getStructuringElement(cv2.MORPH_RECT, (79, 15))
# kernel_y = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 31))
erode_y = cv2.morphologyEx(close, cv2.MORPH_ERODE, kernel_y)
dilate_y = cv2.morphologyEx(erode_y, cv2.MORPH_DILATE, kernel_y)
dilate_x = cv2.morphologyEx(dilate_y, cv2.MORPH_DILATE, kernel_x)
erode_x = cv2.morphologyEx(dilate_x, cv2.MORPH_ERODE, kernel_x)
kernel_e = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 9))
erode = cv2.morphologyEx(erode_x, cv2.MORPH_ERODE, kernel_e)
kernel_d = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 11))
dilate = cv2.morphologyEx(erode, cv2.MORPH_DILATE, kernel_d)
img_copy = img.copy()
contours, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img_copy, contours, -1, (255, 0, 255), 2)
count = 0
for contour in contours:
area = cv2.contourArea(contour)
x, y, w, h = cv2.boundingRect(contour)
perimeter = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True)
CornerNum = len(approx)
if h * 3 < w < h * 7 and area > 1000:
ROI = img[(y - 5):(y + h + 5), (x - 5):(x + w + 5)]
ocr = PaddleOCR(use_angle_cls=False, use_gpu=False, lang="ch", show_log=False)
ocr_text = ocr.ocr(ROI, cls=False)
for line in ocr_text:
number_plate = line[-1][-1][0]
print("车牌内容是:", number_plate)
try:
count += 1
fig = plt.figure(figsize=(18, 14))
plt.subplot(241), plt.imshow(img, 'gray'), plt.axis('off'), plt.title("erode")
plt.subplot(242), plt.imshow(gray, 'gray'), plt.axis('off'), plt.title("gray")
plt.subplot(243), plt.imshow(tophat, "gray"), plt.axis('off'), plt.title("tophat")
plt.subplot(244), plt.imshow(absY, 'gray'), plt.axis('off'), plt.title("sobel")
plt.subplot(245), plt.imshow(binary, "gray"), plt.axis('off'), plt.title("binary")
plt.subplot(246), plt.imshow(dilate, 'gray'), plt.axis('off'), plt.title("morphology")
plt.subplot(247), plt.imshow(img_copy, "gray"), plt.axis('off'), plt.title("contour")
plt.subplot(248), plt.imshow(ROI, 'gray'), plt.axis('off'), plt.title("licence plate")
plt.show()
return ROI
except:
print("ROI提取出错!")
return
pass
if __name__ == '__main__':
dirPath = "test_img"
imgsName = os.listdir(dirPath)
# 1 文件夹
for imgName in imgsName:
imgPath = os.path.join(os.getcwd(),dirPath,imgName)
print(imgPath)
img = cv2.imread(imgPath)
img = cv2.resize(img, (int(img.shape[1] * 0.5), int(img.shape[0] * 0.5)))
try:
img = Morph_Distinguish(img.copy()) # 获取车牌ROI
if img is None:
print("没有提取到车牌")
continue
except:
print("没有提取到车牌")
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » 车牌识别算法demo
发表评论 取消回复