1.线程的创建方式

1.1继承Thread类,重写run方法

package com.atguigu.gmall.product.thread;

import java.math.BigDecimal;

public class ThreadTest {
    public static void main(String[] args) {
        /**
         * 线程的创建方式
         * 1.继承Thread类
         */
        //开启线程
        System.out.println("主线程开始");
        Thread thread = new Thread01();
        thread.start();
        System.out.println("主线程完毕");
    }
    public static class Thread01 extends Thread{

        //创建线程方法一
        //通过继承Thread类重写run()方法,在run()方法中编写业务类
        @Override
        public void run() {
            System.out.println("通过继承Thread类,重写run()方法,创建线程"+Thread.currentThread().getId());
            BigDecimal bigDecimal = new BigDecimal(10);
            BigDecimal bigDecimal1 = new BigDecimal(3);
            BigDecimal divide = bigDecimal1.divide(bigDecimal);
            System.out.println("divide = " + divide);

        }
    }
}

结果
在这里插入图片描述

1.2实现Runnable接口,重写run方法。

package com.atguigu.gmall.product.thread;

import java.math.BigDecimal;

public class RunableTest {
    public static void main(String[] args) {
        /**
         * 创建线程的方法二:
         * 通过实现Runable接口,重新run方法,创建线程。
         */
        //开启线程
        System.out.println("主线程开始");
        Runable01 runable01 = new Runable01();
        Thread thread = new Thread(runable01);
        thread.start();
        System.out.println("主线程完毕");

    }
    public static class Runable01 implements Runnable{
        @Override
        public void run() {
            System.out.println("通过实现Runnable接口,重写run()方法,创建线程"+Thread.currentThread().getId());
            BigDecimal bigDecimal = new BigDecimal(10);
            BigDecimal bigDecimal1 = new BigDecimal(3);
            BigDecimal divide = bigDecimal1.divide(bigDecimal);
            System.out.println("divide = " + divide);
        }
    }
}

在这里插入图片描述

1.3实现Callable接口,重新call方法

package com.atguigu.gmall.product.thread;

import java.math.BigDecimal;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;

public class CallableTest {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        /**
         * 创建线程的方法三
         * 通过实现Callable<>接口,重写call方法,创建线程。可以获取到线程的返回值
         */
        System.out.println("主线程开始");
        FutureTask<String> futureTask = new FutureTask<String>(new Callable01());
        //开启线程
        new Thread(futureTask).start();
        //获取线程的返回值,会阻塞主线程
        System.out.println("主线程阻塞。。。。。。");
        String s = futureTask.get();
        System.out.println("线程的返回值s = " + s);
        System.out.println("主线程结束");
    }
    public static class Callable01 implements Callable<String>{
        @Override
        public String call() throws Exception {
            System.out.println("通过实现Callable<>接口,重写call方法,创建线程。可以获取到线程的返回值"+Thread.currentThread().getId());
            BigDecimal bigDecimal = new BigDecimal(10);
            BigDecimal bigDecimal1 = new BigDecimal(3);
            BigDecimal divide = bigDecimal1.divide(bigDecimal);
            System.out.println("divide = " + divide);
            return divide.toString();
        }
    }
}

在这里插入图片描述

1.4以上三种总结

1.开启线程的方式,Thread对象调用start方法。
2.以上三种只有第三种可以接收线程的返回值。

1.5使用线程池创建线程

1.5.1线程池创建线程的方式

        /**
         * 使用线程池创建线程
         */
        ThreadPoolExecutor executor = new ThreadPoolExecutor(
                10,
                20,
                10,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<>(1000),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy()
                );

1.5.2线程池的七大参数含义

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)
  • corePoolSize:核心的线程池数。也就是线程池一创建就有的。
  • maximumPoolSize:最大的线程池数。这个线程池可以创建的最大的线程池数。
  • keepAliveTime:当线程池中的线程数大于核心的线程池时,这些线程池执行完任务保持存活的时间。
  • unit:时间单位
  • workQueue:阻塞队列,当任务大于核心线程数时,任务就会放在阻塞队列中。
  • threadFactory:创建工厂。指定线程名。
  • handler:拒绝策略。当线程池中所有的线程都在执行任务,而且阻塞队列已经满了。那么来了任务就需要执行拒绝策略了。

1.5.3线程池的工作流程

1、创建线程池,会创建core线程。
2、当任务来了,core线程进行处理,若core不够,那么就会将任务放在workQueue中,当核心线程空闲下来,去workQueue阻塞队列中去任务。
3、若阻塞队列满了,线程池就去开启新的线程,直至线程池中的线程数达到maximumPoolSize最大线程池数。若新的线程空闲下来,过了过期时间,就会自动销毁。
4、若线程池中的线程池数达到了最大线程池数,而且还来了任务,那么就会使用拒绝策略进行处理。
5、所有的线程都是由指定的factory工厂创建的。

1.5.4一个线程池core:7,max:20,queue:50。100个并发进来,怎么分配。

首先:7个线程直接进行处理。
然后:进入队列50个。
再次:开启13个线程进行处理。
最后:70个被安排,30个交给阻塞队列。

2.CompletableFuture异步编排

2.1创建异步对象方式

   //方法一:
    public static CompletableFuture<Void> runAsync(Runnable runnable) {
        return asyncRunStage(asyncPool, runnable);
    }
   //方法二
    public static CompletableFuture<Void> runAsync(Runnable runnable,Executor executor) {
        return asyncRunStage(screenExecutor(executor), runnable);
    }
   //方法三
   public static <U> CompletableFuture<U> supplyAsync(Supplier<U>supplier) {
        return asyncSupplyStage(asyncPool, supplier);
    }
   //方法四
   public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,Executor executor) {
        return asyncSupplyStage(screenExecutor(executor), supplier);
    }

1.runXxx方法没有返回值,supplyXxx方法有返回值。
2.可以传入自定义的线程池,否则默认的线程池。
3.都不会接收返回值。

代码

package com.atguigu.gmall.product.completableFuture;

import rx.Completable;

import java.math.BigDecimal;
import java.util.concurrent.*;

public class Test {
    public static ExecutorService executors = Executors.newFixedThreadPool(10);
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        /**
         * 1.创建异步对象
         */
        //CompletableFuture类中的静态方法
        long startMain = System.currentTimeMillis();
        System.out.println("主线程--开始");
        CompletableFuture<Void> future01 = CompletableFuture.runAsync(new Runnable01());
        CompletableFuture<Void> future02 = CompletableFuture.runAsync(() -> {
            long start02 = System.currentTimeMillis();
            System.out.println("id============================");
            long id = Thread.currentThread().getId();
            System.out.println("当前线程的id = " + id);
            BigDecimal a = new BigDecimal(10);
            BigDecimal b = new BigDecimal(2);
            BigDecimal divide = a.divide(b);
            System.out.println("运行结果divide = " + divide+"02-"+(System.currentTimeMillis() - start02));
        }, executors);
        CompletableFuture<String> future03 = CompletableFuture.supplyAsync(() -> {
            long start03 = System.currentTimeMillis();
            long id = Thread.currentThread().getId();
            System.out.println("id============================");
            System.out.println("当前线程的id = " + id);
            BigDecimal a = new BigDecimal(10);
            BigDecimal b = new BigDecimal(2);
            BigDecimal divide = a.divide(b);
            System.out.println("运行结果divide = " + divide+"03-"+(System.currentTimeMillis() - start03));
            return divide.toString();
        });
        System.out.println("获取返回结果future03.get() = " + future03.get());
        CompletableFuture<String> future04 = CompletableFuture.supplyAsync(() -> {
            long start04 = System.currentTimeMillis();
            long id = Thread.currentThread().getId();
            System.out.println("id============================");
            System.out.println("当前线程的id = " + id);
            BigDecimal a = new BigDecimal(10);
            BigDecimal b = new BigDecimal(2);
            BigDecimal divide = a.divide(b);
            System.out.println("运行结果divide = " + divide+"04-"+(System.currentTimeMillis() - start04));
            return divide.toString();
        },executors);
        System.out.println("获取返回结果future04 = " + future04.get());
        System.out.println("主线程--结束"+"Main用时"+(System.currentTimeMillis() - startMain));
    }

    public static class Runnable01 implements Runnable{
        @Override
        public void run() {
            long start01 = System.currentTimeMillis();
            System.out.println("id============================");
            long id = Thread.currentThread().getId();
            System.out.println("当前线程的id = " + id);
            BigDecimal a = new BigDecimal(10);
            BigDecimal b = new BigDecimal(2);
            BigDecimal divide = a.divide(b);
            System.out.println("运行结果divide = " + divide+"01-"+(System.currentTimeMillis() - start01));
        }
    }
    public static class Callable01 implements Callable<String> {
        @Override
        public String call() {
            System.out.println("id============================");
            long id = Thread.currentThread().getId();
            System.out.println("当前线程的id = " + id);
            BigDecimal a = new BigDecimal(10);
            BigDecimal b = new BigDecimal(2);
            BigDecimal divide = a.divide(b);
            System.out.println("运行结果divide = " + divide);
            return divide.toString();
        }
    }
}

2.2计算完成时回调方法

2.1.1方法完成时的感知(方法一)

    public CompletableFuture<T> whenComplete(
        BiConsumer<? super T, ? super Throwable> action) {
        return uniWhenCompleteStage(null, action);
    }

    public CompletableFuture<T> whenCompleteAsync(
        BiConsumer<? super T, ? super Throwable> action) {
        return uniWhenCompleteStage(asyncPool, action);
    }

    public CompletableFuture<T> whenCompleteAsync(
        BiConsumer<? super T, ? super Throwable> action, Executor executor) {
        return uniWhenCompleteStage(screenExecutor(executor), action);
    }
        public CompletableFuture<T> exceptionally(
        Function<Throwable, ? extends T> fn) {
        return uniExceptionallyStage(fn);
    }

whenComplete 可以处理正常结果但是不能返回结果、感知异常但是不能处理异常。这个方法不可以进行返回值
exceptionally可以感知异常并且修改返回值进行返回。

whenComplete 和 whenCompleteAsync 的区别:
whenComplete:是执行当前任务的线程执行继续执行 whenComplete 的任务。
whenCompleteAsync:是执行把 whenCompleteAsync 这个任务继续提交给线程池来进行执行。
方法不以 Async 结尾,意味着 Action 使用相同的线程执行,而 Async 可能会使用其他线程执行(如果是使用相同的线程池,也可能会被同一个线程选中执行)
代码示例

package com.atguigu.gmall.product.completableFuture;

import java.math.BigDecimal;
import java.util.concurrent.*;

public class Test02 {
    public static ExecutorService executors = Executors.newFixedThreadPool(10);
    public static void main(String[] args) throws ExecutionException, InterruptedException {

        CompletableFuture<String> exceptionally = CompletableFuture.supplyAsync(() -> {
            int i = 10/0;
            return "a";
        }).whenCompleteAsync((res, exception) -> {
            //尽可以感到异常,不可以修改返回结果
            System.out.println("输出返回结果" + res);

        }, executors).exceptionally((exception -> {
            //可以感到异常,并且修改返回结果
            return "b";
        }));
        System.out.println("获取返回结果:" + exceptionally.get());

    }

    public static class Runnable01 implements Runnable{
        @Override
        public void run() {
            long start01 = System.currentTimeMillis();
            System.out.println("id============================");
            long id = Thread.currentThread().getId();
            System.out.println("当前线程的id = " + id);
            BigDecimal a = new BigDecimal(10);
            BigDecimal b = new BigDecimal(2);
            BigDecimal divide = a.divide(b);
            System.out.println("运行结果divide = " + divide+"01-"+(System.currentTimeMillis() - start01));
        }
    }
    public static class Callable01 implements Callable<String> {
        @Override
        public String call() {
            System.out.println("id============================");
            long id = Thread.currentThread().getId();
            System.out.println("当前线程的id = " + id);
            BigDecimal a = new BigDecimal(10);
            BigDecimal b = new BigDecimal(2);
            BigDecimal divide = a.divide(b);
            System.out.println("运行结果divide = " + divide);
            return divide.toString();
        }
    }
}

2.1.2方法完成时的处理(方法二)

    public <U> CompletableFuture<U> handle(
        BiFunction<? super T, Throwable, ? extends U> fn) {
        return uniHandleStage(null, fn);
    }

    public <U> CompletableFuture<U> handleAsync(
        BiFunction<? super T, Throwable, ? extends U> fn) {
        return uniHandleStage(asyncPool, fn);
    }

    public <U> CompletableFuture<U> handleAsync(
        BiFunction<? super T, Throwable, ? extends U> fn, Executor executor) {
        return uniHandleStage(screenExecutor(executor), fn);
    }

不仅可以处理正常结果而且可以处理异常
不仅可以接收值,而且可以返回处理结果

代码实例

package com.atguigu.gmall.product.completableFuture;

import java.math.BigDecimal;
import java.util.concurrent.*;

public class Test02 {
    public static ExecutorService executors = Executors.newFixedThreadPool(10);
    public static void main(String[] args) throws ExecutionException, InterruptedException {

        CompletableFuture<String> exceptionally = CompletableFuture.supplyAsync(() -> {
            int i = 10/0;
            return "a";
        }).handleAsync((res,exception) -> {
            //不仅可以接收参数,而且可以返回结果
            if (res != null){
                return "值"+res;
            }
            if (exception != null){
                return "异常"+exception.getMessage();
            }
            return "0";
        },executors);
        System.out.println("获取返回结果:" + exceptionally.get());

    }

    public static class Runnable01 implements Runnable{
        @Override
        public void run() {
            long start01 = System.currentTimeMillis();
            System.out.println("id============================");
            long id = Thread.currentThread().getId();
            System.out.println("当前线程的id = " + id);
            BigDecimal a = new BigDecimal(10);
            BigDecimal b = new BigDecimal(2);
            BigDecimal divide = a.divide(b);
            System.out.println("运行结果divide = " + divide+"01-"+(System.currentTimeMillis() - start01));
        }
    }
    public static class Callable01 implements Callable<String> {
        @Override
        public String call() {
            System.out.println("id============================");
            long id = Thread.currentThread().getId();
            System.out.println("当前线程的id = " + id);
            BigDecimal a = new BigDecimal(10);
            BigDecimal b = new BigDecimal(2);
            BigDecimal divide = a.divide(b);
            System.out.println("运行结果divide = " + divide);
            return divide.toString();
        }
    }
}

2.3线程的串行化的方法

2.3.1不能接收值且没有返回值

thenRun方法:只要上面的任务执行完成,就开始执行thenRun,只是处理完任务后,执行 thenRun的后续操作

    public CompletableFuture<Void> thenRun(Runnable action) {
        return uniRunStage(null, action);
    }

    public CompletableFuture<Void> thenRunAsync(Runnable action) {
        return uniRunStage(asyncPool, action);
    }

    public CompletableFuture<Void> thenRunAsync(Runnable action,
                                                Executor executor) {
        return uniRunStage(screenExecutor(executor), action);
    }

代码示例

package com.atguigu.gmall.product.completableFuture;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Test03 {
    public static ExecutorService excutor =Executors.newFixedThreadPool(10);
    public static void main(String[] args) throws ExecutionException, InterruptedException {

        CompletableFuture<Void> future01 = CompletableFuture.supplyAsync(() -> {
            int i = 0;
            System.out.println("i = " + i);
            return i;
        }).thenRunAsync(() -> {
            int j = 0;
            System.out.println("j = " + j);
        });
        Void unused = future01.get();
        System.out.println("unused = " + unused);
    }
}

2.3.2可以接收值但是没有返回值

thenAccept方法:消费处理结果。接收任务的处理结果,并消费处理,无返回结果。

    public CompletableFuture<Void> thenAccept(Consumer<? super T> action) {
        return uniAcceptStage(null, action);
    }

    public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action) {
        return uniAcceptStage(asyncPool, action);
    }

    public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action,
                                                   Executor executor) {
        return uniAcceptStage(screenExecutor(executor), action);
    }

2.3.3可以接收值也可以返回值

thenApply 方法:当一个线程依赖另一个线程时,获取上一个任务返回的结果,并返回当前任务的返回值。

    public <U> CompletableFuture<U> thenApply(
        Function<? super T,? extends U> fn) {
        return uniApplyStage(null, fn);
    }

    public <U> CompletableFuture<U> thenApplyAsync(
        Function<? super T,? extends U> fn) {
        return uniApplyStage(asyncPool, fn);
    }

    public <U> CompletableFuture<U> thenApplyAsync(
        Function<? super T,? extends U> fn, Executor executor) {
        return uniApplyStage(screenExecutor(executor), fn);
    }

代码示例

package com.atguigu.gmall.product.completableFuture;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Test03 {
    public static ExecutorService excutor =Executors.newFixedThreadPool(10);
    public static void main(String[] args) throws ExecutionException, InterruptedException {

        CompletableFuture<Integer> future03 = CompletableFuture.supplyAsync(() -> {
            int i = 0;
            System.out.println("i = " + i);
            return i;
        }).thenApplyAsync((res) -> {
            res++;
            return res;
        });
        Integer integer = future03.get();
        System.out.println("integer = " + integer);
    }
}

带有Async默认是异步执行的。这里所谓的异步指的是不在当前线程内执行。

Function<? super T,? extends U>
T:上一个任务返回结果的类型
U:当前任务的返回值类型

2.4两任务组合-一个完成即可

2.5两任务组合-两个都要完成

2.6多任务组合

2.7查看商品详情实战

 @Autowired
    private ThreadPoolExecutor executor;
    public Map<String, Object> getBySkuId(Long skuId) {

        Map<String, Object> result = new HashMap<>();

        //添加布隆过滤器 每次添加skuinfo信息的时候,都会把skuid放在布隆过滤器中,这样查询skuinfo时,
        // 首先进行检查是否通过布隆过滤器,通过说明在数据库中存在该数据。不通过说明数据库不存在该数据。
        // 布隆过滤器可以解决缓存穿透的问题。
        RBloomFilter<Object> bloomFilter = redissonClient.getBloomFilter(RedisConst.SKU_BLOOM_FILTER);
        if (!bloomFilter.contains(skuId)) return result;

        //添加异步任务 查询skuInfo
        CompletableFuture<SkuInfo> skuInfoCompletableFuture = CompletableFuture.supplyAsync(() -> {
            SkuInfo skuInfo = productFeignClient.getSkuInfo(skuId);
            if (skuInfo == null){
                return skuInfo;
            }
            result.put("skuInfo",skuInfo);
            return skuInfo;
        }, executor);



        //  获取分类数据
        CompletableFuture<Void> categoryViewCompletableFuture = skuInfoCompletableFuture.thenAcceptAsync((skuInfo) -> {
            BaseCategoryView categoryView = productFeignClient.getCategoryView(skuInfo.getCategory3Id());
            result.put("categoryView", categoryView);
        });

        //  获取销售属性+销售属性值
        CompletableFuture<Void> spuSaleAttrListCompletableFuture = skuInfoCompletableFuture.thenAcceptAsync((skuInfo -> {
            List<SpuSaleAttr> spuSaleAttrListCheckBySku = productFeignClient.getSpuSaleAttrListCheckBySku(skuId, skuInfo.getSpuId());
            result.put("spuSaleAttrList", spuSaleAttrListCheckBySku);
        }));

                //  查询销售属性值Id 与skuId 组合的map
        CompletableFuture<Void> valuesSkuJsonCompletableFuture = skuInfoCompletableFuture.thenAcceptAsync(skuInfo -> {
            Map skuValueIdsMap = productFeignClient.getSkuValueIdsMap(skuInfo.getSpuId());
            //  将这个map 转换为页面需要的Json 对象
            String valueJson = JSON.toJSONString(skuValueIdsMap);
            result.put("valuesSkuJson", valueJson);
        });


        //  spu海报数据
        CompletableFuture<Void> spuPosterListCompletableFuture = skuInfoCompletableFuture.thenAcceptAsync(skuInfo -> {
            //  返回map 集合 Thymeleaf 渲染:能用map 存储数据!
            List<SpuPoster> spuPosterList = productFeignClient.getSpuPosterBySpuId(skuInfo.getSpuId());
            result.put("spuPosterList", spuPosterList);
        });


        //  获取价格
        CompletableFuture<Void> skuPriceCompletableFuture = CompletableFuture.runAsync(() -> {
            BigDecimal skuPrice = productFeignClient.getSkuPrice(skuId);
            //  map 中 key 对应的谁? Thymeleaf 获取数据的时候 ${skuInfo.skuName}
            result.put("price", skuPrice);
        });

        CompletableFuture<Void> skuAttrListCompletableFuture = CompletableFuture.runAsync(() -> {
            List<BaseAttrInfo> attrList = productFeignClient.getAttrList(skuId);
            //  使用拉姆达表示
            List<Map<String, String>> skuAttrList = attrList.stream().map((baseAttrInfo) -> {
                Map<String, String> attrMap = new HashMap<>();
                attrMap.put("attrName", baseAttrInfo.getAttrName());
                attrMap.put("attrValue", baseAttrInfo.getAttrValueList().get(0).getValueName());
                return attrMap;
            }).collect(Collectors.toList());
            result.put("skuAttrList", skuAttrList);
        });


        //阻塞主线程等待总的结果
        CompletableFuture<Void> future = CompletableFuture.allOf(skuInfoCompletableFuture, categoryViewCompletableFuture,
                spuSaleAttrListCompletableFuture, valuesSkuJsonCompletableFuture,
                spuPosterListCompletableFuture, skuPriceCompletableFuture,
                skuAttrListCompletableFuture);
        future.join();
        return result;

    }

修改之前
在这里插入图片描述
修改之后
在这里插入图片描述

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部