数据集为NASA锂电池数据集。
import datetime
import numpy as np
import pandas as pd
from scipy.io import loadmat
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn import metrics
import matplotlib.pyplot as plt
import seaborn as sns
Load Dataset
def load_data(battery):
mat = loadmat('' + battery + '.mat')
print('Total data in dataset: ', len(mat[battery][0, 0]['cycle'][0]))
counter = 0
dataset = []
capacity_data = []
for i in range(len(mat[battery][0, 0]['cycle'][0])):
row = mat[battery][0, 0]['cycle'][0, i]
if row['type'][0] == 'discharge':
ambient_temperature = row['ambient_temperature'][0][0]
date_time = datetime.datetime(int(row['time'][0][0]),
int(row['time'][0][1]),
int(row['time'][0][2]),
int(row['time'][0][3]),
int(row['time'][0][4])) + datetime.timedelta(seconds=int(row['time'][0][5]))
data = row['data']
capacity = data[0][0]['Capacity'][0][0]
for j in range(len(data[0][0]['Voltage_measured'][0])):
voltage_measured = data[0][0]['Voltage_measured'][0][j]
current_measured = data[0][0]['Current_measured'][0][j]
temperature_measured = data[0][0]['Temperature_measured'][0][j]
current_load = data[0][0]['Current_load'][0][j]
voltage_load = data[0][0]['Voltage_load'][0][j]
time = data[0][0]['Time'][0][j]
dataset.append([counter + 1, ambient_temperature, date_time, capacity,
voltage_measured, current_measured,
temperature_measured, current_load,
voltage_load, time])
capacity_data.append([counter + 1, ambient_temperature, date_time, capacity])
counter = counter + 1
print(dataset[0])
return [pd.DataFrame(data=dataset,
columns=['cycle', 'ambient_temperature', 'datetime',
'capacity', 'voltage_measured',
'current_measured', 'temperature_measured',
'current_load', 'voltage_load', 'time']),
pd.DataFrame(data=capacity_data,
columns=['cycle', 'ambient_temperature', 'datetime',
'capacity'])]
dataset, capacity = load_data('B0005')
pd.set_option('display.max_columns', 10)
Total data in dataset: 616 [1, 24, datetime.datetime(2008, 4, 2, 15, 25, 41), 1.8564874208181574, 4.191491807505295, -0.004901589207462691, 24.330033885570543, -0.0006, 0.0, 0.0]
dataset.head()
plot_df = capacity.loc[(capacity['cycle']>=1),['cycle','capacity']]
sns.set_style("darkgrid")
plt.figure(figsize=(12, 8))
plt.plot(plot_df['cycle'], plot_df['capacity'])
#Draw threshold
plt.plot([0.,len(capacity)], [1.4, 1.4])
plt.ylabel('Capacity')
# make x-axis ticks legible
adf = plt.gca().get_xaxis().get_major_formatter()
plt.xlabel('cycle')
plt.title('Discharge B0005')
plot_df = dis_ele.loc[(dis_ele['cycle']>=1),['cycle','SoH']]
sns.set_style("white")
plt.figure(figsize=(8, 5))
plt.plot(plot_df['cycle'], plot_df['SoH'])
#Draw threshold
plt.plot([0.,len(capacity)], [0.70, 0.70])
plt.ylabel('SOH')
# make x-axis ticks legible
adf = plt.gca().get_xaxis().get_major_formatter()
plt.xlabel('cycle')
plt.title('Discharge B0005')
cycle_array= np.array(dataset['cycle'])
dataset['RUL'] = 168-cycle_array
dataset
df = dataset
df = df.drop(columns = ['SoH'])
Explodatory Data Analysis
df.head()
df.describe()
sns.heatmap(df.corr(), annot = True)
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 50285 entries, 0 to 50284 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 cycle 50285 non-null int64 1 ambient_temperature 50285 non-null int32 2 datetime 50285 non-null datetime64[ns] 3 capacity 50285 non-null float64 4 voltage_measured 50285 non-null float64 5 current_measured 50285 non-null float64 6 temperature_measured 50285 non-null float64 7 current_load 50285 non-null float64 8 voltage_load 50285 non-null float64 9 time 50285 non-null float64 10 RUL 50285 non-null int64 11 SOH 50285 non-null float64 dtypes: datetime64[ns](1), float64(8), int32(1), int64(2) memory usage: 4.4 MB
dataset.isna().sum()
cycle 0 ambient_temperature 0 datetime 0 capacity 0 voltage_measured 0 current_measured 0 temperature_measured 0 current_load 0 voltage_load 0 time 0 SoH 50117
dtype: int64
Machine learning Implementation
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
import pandas as pd
# Assuming df is your DataFrame
features = ['cycle', 'ambient_temperature', 'voltage_measured', 'current_measured', 'temperature_measured', 'current_load', 'voltage_load', 'time']
target = 'SOH'
# Split the data into features (X) and target variable (y)
X = df[features]
y = df[target]
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Linear Regression
linear_model = LinearRegression()
linear_model.fit(X_train, y_train)
linear_predictions = linear_model.predict(X_test)
# Decision Tree Regressor
dt_model = DecisionTreeRegressor(random_state=42)
dt_model.fit(X_train, y_train)
dt_predictions = dt_model.predict(X_test)
# Random Forest Regressor
rf_model = RandomForestRegressor(random_state=42)
rf_model.fit(X_train, y_train)
rf_predictions = rf_model.predict(X_test)
# Evaluate the models
def evaluate_model(predictions, y_test, model_name):
mse = mean_squared_error(y_test, predictions)
r2 = r2_score(y_test, predictions)
print(f"{model_name} - Mean Squared Error: {mse}, R-squared: {r2}")
evaluate_model(linear_predictions, y_test, 'Linear Regression')
evaluate_model(dt_predictions, y_test, 'Decision Tree Regressor')
evaluate_model(rf_predictions, y_test, 'Random Forest Regressor')
Linear Regression - Mean Squared Error: 0.0002239971272592741, R-squared: 0.9768123399683541 Decision Tree Regressor - Mean Squared Error: 5.793947345542318e-30, R-squared: 1.0 Random Forest Regressor - Mean Squared Error: 1.2263587861112884e-09, R-squared: 0.9999998730501996
Ensemble techniques
from sklearn.ensemble import BaggingRegressor, GradientBoostingRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
import pandas as pd
# Assuming df is your DataFrame
features = ['cycle', 'ambient_temperature', 'voltage_measured', 'current_measured', 'temperature_measured', 'current_load', 'voltage_load', 'time']
target = 'SOH'
# Split the data into features (X) and target variable (y)
X = df[features]
y = df[target]
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Bagging with Random Forest
bagging_model = BaggingRegressor(base_estimator=RandomForestRegressor(), n_estimators=10, random_state=42)
bagging_model.fit(X_train, y_train)
bagging_predictions = bagging_model.predict(X_test)
# Boosting with Gradient Boosting
boosting_model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, random_state=42)
boosting_model.fit(X_train, y_train)
boosting_predictions = boosting_model.predict(X_test)
# Evaluate the models
def evaluate_model(predictions, y_test, model_name):
mse = mean_squared_error(y_test, predictions)
r2 = r2_score(y_test, predictions)
print(f"{model_name} - Mean Squared Error: {mse}, R-squared: {r2}")
evaluate_model(bagging_predictions, y_test, 'Bagging with Random Forest')
evaluate_model(boosting_predictions, y_test, 'Boosting with Gradient Boosting')
Bagging with Random Forest - Mean Squared Error: 1.076830712151592e-11, R-squared: 0.99999999888529 Boosting with Gradient Boosting - Mean Squared Error: 3.0152836389704887e-06, R-squared: 0.9996878648723093
Visualize the predicted values against the actual values
import matplotlib.pyplot as plt
import numpy as np
# Scatter plot for Linear Regression
plt.figure(figsize=(10, 6))
plt.scatter(y_test, linear_predictions, label='Linear Regression', alpha=0.5)
plt.xlabel('Actual SOH')
plt.ylabel('Predicted SOH')
plt.title('Scatter plot for Linear Regression')
plt.legend()
plt.show()
# Scatter plot for Decision Tree Regressor
plt.figure(figsize=(10, 6))
plt.scatter(y_test, dt_predictions, label='Decision Tree Regressor', alpha=0.5)
plt.xlabel('Actual SOH')
plt.ylabel('Predicted SOH')
plt.title('Scatter plot for Decision Tree Regressor')
plt.legend()
plt.show()
# Scatter plot for Random Forest Regressor
plt.figure(figsize=(10, 6))
plt.scatter(y_test, rf_predictions, label='Random Forest Regressor', alpha=0.5)
plt.xlabel('Actual SOH')
plt.ylabel('Predicted SOH')
plt.title('Scatter plot for Random Forest Regressor')
plt.legend()
plt.show()
# Scatter plot for Bagging with Random Forest
plt.figure(figsize=(10, 6))
plt.scatter(y_test, bagging_predictions, label='Bagging with Random Forest', alpha=0.5)
plt.xlabel('Actual SOH')
plt.ylabel('Predicted SOH')
plt.title('Scatter plot for Bagging with Random Forest')
plt.legend()
plt.show()
# Scatter plot for Boosting with Gradient Boosting
plt.figure(figsize=(10, 6))
plt.scatter(y_test, boosting_predictions, label='Boosting with Gradient Boosting', alpha=0.5)
plt.xlabel('Actual SOH')
plt.ylabel('Predicted SOH')
plt.title('Scatter plot for Boosting with Gradient Boosting')
plt.legend()
plt.show()
Comparing the accuracy of different models
import matplotlib.pyplot as plt
# R-squared values for each model
r_squared_values = [linear_model.score(X_test, y_test),
dt_model.score(X_test, y_test),
rf_model.score(X_test, y_test),
bagging_model.score(X_test, y_test),
boosting_model.score(X_test, y_test)]
# Model names
model_names = ['Linear Regression', 'Decision Tree', 'Random Forest', 'Bagging with RF', 'Boosting with GB']
# Bar plot
plt.figure(figsize=(10, 6))
plt.bar(model_names, r_squared_values, color=['blue', 'green', 'orange', 'red', 'purple'])
plt.ylabel('R-squared Value')
plt.title('R-squared Comparison of Regression Models')
plt.ylim(0, 1) # Set y-axis limit to be between 0 and 1
plt.show()
工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » 基于机器学习的锂电池RUL SOH预测
发表评论 取消回复