时序预测 | MATLAB实现TCN-Transformer时间序列预测

目录

    • 时序预测 | MATLAB实现TCN-Transformer时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现TCN-Transformer时间序列预测;
2.运行环境为Matlab2023b及以上;
3.data为数据集,单变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价。
代码只是提供模型学习,不能保证替换您的数据集就能达到很好的效果,这都需要大量的实验和调参。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现TCN-Transformer时间序列预测
%% 运行环境Matlab2023及以上
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据格式转换
pc_train{1, 1} = p_train; 
pc_test {1, 1} = p_test ;
tc_train{1, 1} = t_train; 
tc_test {1, 1} = t_test ;

%%  设置网络参数 
numFilters = 16;         % 卷积核个数
filterSize = 3;          % 卷积核大小
dropoutFactor = 0.05;    % 空间丢失因子
numBlocks = 1;           % 残差块个数
numFeatures = f_;         % 特征个数

%%  输入层结构
layer = sequenceInputLayer(numFeatures, Normalization = "rescale-symmetric", Name = "input");

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部