个人主页: 熬夜学编程的小林

系列专栏: 【C语言详解】 【数据结构详解】【C++详解】

目录

1、选择排序

1.1、基本思想

1.2、代码实现

1.3、代码测试

1.4、时空复杂度分析

总结


1、选择排序

1.1、基本思想

选择排序是一种简单直观的比较排序算法。该算法的基本思想是在每一轮中选出当前未排序部分的最小(或最大)元素,然后将其放置到未排序序列的起始位置,这个过程一直重复直至整个数组被排序。

选择排序的具体步骤如下:

从数组的当前未排序部分选择最小(或最大)的一个元素
将这个最小(或最大)元素与未排序序列的第一个元素交换位置
然后从剩余未排序的元素中继续这个过程,将每一次找到的最小(或最大)元素放到未排序序列的开始。
这个过程一直进行到整个数组的所有元素都被排为有序状态

1.2、代码实现

此处可以进行一个小的优化,同时找最小值与最大值,但是有一个细节需要注意,先上代码。

此处还需要交换元素,所以提前封装一个交换函数。

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void SelectSort(int a[], int n)
{
	int begin = 0;
	int end = n - 1;
	while (begin < end)
	{
		int maxi = begin;//找最大值的下标
		int mini = begin;//找最小值的下标
		for (int i = begin + 1; i <= end; i++)
		{
			if (a[i] < a[mini])
			{
				mini = i;
			}
			if (a[i] > a[maxi])
			{
				maxi = i;
			}
		}
		Swap(&a[begin], &a[mini]);
		Swap(&a[end], &a[maxi]);
		begin++;
		end--;
	}
}

首先初始化两个索引beginend,分别代表当前未排序序列的开始和结束位置。

进入一个循环,条件是begin < end,确保在数组中还有未排序的元素。

遍历一遍序列,找到最大元素和最小元素的下标。

将最小元素与序列的始端交换,最大元素与序列的尾端交换。

更新begin与end。

思考一下上面写的代码有没有问题呢???

答案是有问题的,因为这里我们是首先进行最小元素与首位置更换,再进行最大元素与末尾更换,如果我的最大元素就在首位置就会有问题,如下图:

如果最大值就在第一个位置时需要更新最大值的下标!!! 

正确的代码如下:

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void SelectSort(int a[], int n)
{
	int begin = 0;
	int end = n - 1;
	while (begin < end)
	{
		int maxi = begin;//找最大值的下标
		int mini = begin;//找最小值的下标
		for (int i = begin + 1; i <= end; i++)
		{
			if (a[i] < a[mini])
			{
				mini = i;
			}
			if (a[i] > a[maxi])
			{
				maxi = i;
			}
		}
		Swap(&a[begin], &a[mini]);
		//最大值的位置跟最小值重合
		//mini被换到maxi位置时  原本的最大值则是mini
		if (maxi == begin)
			maxi = mini;
		Swap(&a[end], &a[maxi]);

		begin++;
		end--;
	}
}

注意:

1.这里是对最初的选择排序进行优化,最小值最大值一起进行的。

2.当最大值被交换后,需要重新赋值。 


 1.3、代码测试

测试代码:

//测试选择排序
int main()
{
	int a[] = { 9,8,7,6,5,4,3,2,1,0 };//给一组数据
	int sz = sizeof(a) / sizeof(a[0]);//计算数组元素个数
	printf("排序前:\n");
	ArrayPrint(a, sz);
	SelectSort(a, sz);
	printf("排序后:\n");
	ArrayPrint(a, sz);
	return 0;
}

 测试结果:

1.4、时空复杂度分析

时间复杂度

最好、平均、最坏情况下的时间复杂度都是 O(n^2)。

原因在于,不管数组的初始顺序如何,选择排序都需要比较所有未排序的元素来找到最小(或最大)的元素,并执行这个过程 n-1 次(对于 n 个元素的数组)。每次选择操作需要比较的次数从 n-1 次减少到 1 次,总共的比较次数是 (n-1) + (n-2) + … + 1 = n(n-1)/2,这是一个二次函数,因此时间复杂度为 O(n^2)。

空间复杂度

选择排序是一种原地排序算法,除了输入数组外,它只需要有限的几个变量(比如,用于存储最小元素下标的变量和循环计数器)。因此,它的空间复杂度为常数空间O(1)。

选择排序的特性总结:

1. 选择排序思考非常好理解,但是效率不是很好。实际中很少使用。
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:不稳定

5. 复杂性:简单

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部