代码:
import torch
class_num = 10
batch_size = 4
label = torch.LongTensor(batch_size, 1).random_() % class_num
print(label.size())
one_hot = torch.zeros(batch_size, class_num).scatter_(1, label, 1)
print(one_hot)
输出:
torch.Size([4, 1])
tensor([[0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]])
注意:
label的形状必须是[n,1]的,也就是必须是二维的,且第二个维度长度为1,如果是一维度的,则需要升维度,代码如下:
import torch
class_num = 10
batch_size = 4
label = torch.LongTensor(batch_size).random_() % class_num
print(label.size())
label = torch.unsqueeze(label,dim=1)
print(label.size())
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » PyTorch实现标签到One-Hot编码的步骤解析
发表评论 取消回复