源码
链接 link
#include <opencv2/core.hpp>
#include <iostream>
#include <string>
using namespace cv;
using namespace std;
// 帮助信息函数
static void help(char** av)
{
cout << endl
<< av[0] << " shows the usage of the OpenCV serialization functionality." << endl
<< "usage: " << endl
<< av[0] << " outputfile.yml.gz" << endl
<< "The output file may be either XML (xml) or YAML (yml/yaml). You can even compress it by "
<< "specifying this in its extension like xml.gz yaml.gz etc... " << endl
<< "With FileStorage you can serialize objects in OpenCV by using the << and >> operators" << endl
<< "For example: - create a class and have it serialized" << endl
<< " - use it to read and write matrices." << endl;
}
// 自定义数据结构 MyData
// 主要提供序列化和反序列化相关的读写功能
class MyData
{
public:
MyData() : A(0), X(0), id() {}
explicit MyData(int) : A(97), X(CV_PI), id("mydata1234") {}
void write(FileStorage& fs) const
{
fs << "{" << "A" << A << "X" << X << "id" << id << "}";
}
void read(const FileNode& node)
{
A = (int)node["A"];
X = (double)node["X"];
id = (string)node["id"];
}
public:
int A;
double X;
string id;
};
// 序列化和反序列化的辅助函数
static void write(FileStorage& fs, const std::string&, const MyData& x)
{
x.write(fs);
}
static void read(const FileNode& node, MyData& x, const MyData& default_value = MyData())
{
if (node.empty())
x = default_value;
else
x.read(node);
}
// 重载输出运算符
static ostream& operator<<(ostream& out, const MyData& m)
{
out << "{ id = " << m.id << ", ";
out << "X = " << m.X << ", ";
out << "A = " << m.A << "}";
return out;
}
// 主函数
int main(int ac, char** av)
{
if (ac != 2)
{
help(av);
return 1;
}
string filename = av[1];
{ // 写操作
Mat R = Mat_<uchar>::eye(3, 3),
T = Mat_<double>::zeros(3, 1);
MyData m(1);
FileStorage fs(filename, FileStorage::WRITE);
fs << "iterationNr" << 100;
fs << "strings" << "[";
fs << "image1.jpg" << "Awesomeness" << "../data/baboon.jpg";
fs << "]";
fs << "Mapping";
fs << "{" << "One" << 1;
fs << "Two" << 2 << "}";
fs << "R" << R;
fs << "T" << T;
fs << "MyData" << m;
fs.release();
cout << "Write Done." << endl;
}
{ // 读操作
cout << endl << "Reading: " << endl;
FileStorage fs;
fs.open(filename, FileStorage::READ);
if (!fs.isOpened())
{
cerr << "Failed to open " << filename << endl;
help(av);
return 1;
}
int itNr;
itNr = (int) fs["iterationNr"];
cout << itNr << endl;
FileNode n = fs["strings"];
if (n.type() != FileNode::SEQ)
{
cerr << "strings is not a sequence! FAIL" << endl;
return 1;
}
FileNodeIterator it = n.begin(), it_end = n.end();
for (; it != it_end; ++it)
cout << (string)*it << endl;
n = fs["Mapping"];
cout << "Two " << (int)(n["Two"]) << "; ";
cout << "One " << (int)(n["One"]) << endl << endl;
MyData m;
Mat R, T;
fs["R"] >> R;
fs["T"] >> T;
fs["MyData"] >> m;
cout << "R = " << R << endl;
cout << "T = " << T << endl << endl;
cout << "MyData = " << endl << m << endl << endl;
cout << "Attempt to read NonExisting (should initialize the data structure with its default).";
fs["NonExisting"] >> m;
cout << endl << "NonExisting = " << endl << m << endl;
}
cout << endl
<< "Tip: Open up " << filename << " with a text editor to see the serialized data." << endl;
return 0;
}
解析
- XML/YAML文件的开关。
在Opencv中XML和YAML的数据结构是cv::FileStorage。
FileStorage fs(filename, FileStorage::WRITE);
// or:
// FileStorage fs;
// fs.open(filename, FileStorage::WRITE);
该文件会在cv::FileStorage对象被销毁时自动关闭,但是你还是需要使用释放函数来额外声明一下。
fs.release(); // explicit close
- 文本和数字的输入输出。
在c++中,数据结构使用STL库中的<<输出操作符,如下所示。
fs << "iterationNr" << 100;
读入是一个简单的寻址(通过[]操作符)和强制类型转换操作,或者通过>>操作符进行读操作。
int itNr;
//fs["iterationNr"] >> itNr;
itNr = (int) fs["iterationNr"];
- Opencv数据结构的输入输出
Mat R = Mat_<uchar>::eye(3, 3),
T = Mat_<double>::zeros(3, 1);
fs << "R" << R; // cv::Mat
fs << "T" << T;
fs["R"] >> R; // Read cv::Mat
fs["T"] >> T;
-
vector和相关map的输入输出
-
读写数据结构
举一个数据结构的例子
class MyData
{
public:
MyData() : A(0), X(0), id() {}
public: // Data Members
int A;
double X;
string id;
};
在c++中,可以通过OpenCV I/O XML/YAML接口(就像OpenCV数据结构的情况一样)通过在类内外添加读和写函数来序列化它。
void write(FileStorage& fs) const //Write serialization for this class
{
fs << "{" << "A" << A << "X" << X << "id" << id << "}";
}
void read(const FileNode& node) //Read serialization for this class
{
A = (int)node["A"];
X = (double)node["X"];
id = (string)node["id"];
}
在C++中,你还需要添加在该类之外的函数定义:
static void write(FileStorage& fs, const std::string&, const MyData& x)
{
x.write(fs);
}
static void read(const FileNode& node, MyData& x, const MyData& default_value = MyData()){
if(node.empty())
x = default_value;
else
x.read(node);
}
在这里,您可以观察到,在read部分中,我们定义了如果用户试图读取不存在的节点会发生什么。在这种情况下,我们只返回默认的初始化值,然而,更详细的解决方案是返回例如对象ID的- 1值。
添加了这四个函数后,使用>>操作符进行写操作,使用<<操作符进行读操作。
MyData m(1);
fs << "MyData" << m; // your own data structures
fs["MyData"] >> m; // Read your own structure_
或:
cout << "Attempt to read NonExisting (should initialize the data structure with its default).";
fs["NonExisting"] >> m;
cout << endl << "NonExisting = " << endl << m << endl;
结果
Write Done.
Reading:
100image1.jpg
Awesomeness
baboon.jpg
Two 2; One 1
R = [1, 0, 0;
0, 1, 0;
0, 0, 1]
T = [0; 0; 0]
MyData =
{ id = mydata1234, X = 3.14159, A = 97}
Attempt to read NonExisting (should initialize the data structure with its default).
NonExisting =
{ id = , X = 0, A = 0}
Tip: Open up output.xml with a text editor to see the serialized data.
输出
XML
<?xml version="1.0"?>
<opencv_storage>
<iterationNr>100</iterationNr>
<strings>
image1.jpg Awesomeness baboon.jpg</strings>
<Mapping>
<One>1</One>
<Two>2</Two></Mapping>
<R type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>u</dt>
<data>
1 0 0 0 1 0 0 0 1</data></R>
<T type_id="opencv-matrix">
<rows>3</rows>
<cols>1</cols>
<dt>d</dt>
<data>
0. 0. 0.</data></T>
<MyData>
<A>97</A>
<X>3.1415926535897931e+000</X>
<id>mydata1234</id></MyData>
</opencv_storage>
YAML
%YAML:1.0
iterationNr: 100
strings:
- "image1.jpg"
- Awesomeness
- "baboon.jpg"
Mapping:
One: 1
Two: 2
R: !!opencv-matrix
rows: 3
cols: 3
dt: u
data: [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]
T: !!opencv-matrix
rows: 3
cols: 1
dt: d
data: [ 0., 0., 0. ]
MyData:
A: 97
X: 3.1415926535897931e+000
id: mydata1234
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » opencv 使用XML和YAML格式来输入输出文件
发表评论 取消回复