目录
本篇主要理解树和二叉树相关概念,二叉树遍历及基本操作。
1. 树型结构
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
- 有一个特殊的结点,称为根结点,根结点没有前驱结点。
- 除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
- 树是由递归定义的。
树与非树的区分点:
- 树形结构中,子树之间不能有交集,否则就不是树形结构
- 树形结构中,除根结点外,每个节点有且仅有一个父节点,否则就不是树形结构
- 树形结构中,一颗N个结点的树有N-1条边,否则就不是树形结构
1.1概念
树型结构里,有非常多的概念,多用用就记住了
结点的度
:一个结点含有子树的个数称为该结点的度; 如上图:
A
的度为3
树的度
:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为3
叶子结点或终端结点
:度为
0
的结点称为叶结点; 如上图:J F K L
等节点为叶结点
双亲结点或父结点
:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:
A
是
B
的父结点
孩子结点或子结点
:一个结点含有的子树的根结点称为该结点的子结点; 如上图:
B
是
A
的孩子结点
根结点
:一棵树中,没有双亲结点的结点;如上图:
A
结点的层次
:从根开始定义起,根为第
1
层,根的子结点为第
2
层,以此类推
树的高度或深度
:树中结点的最大层次; 如上图:树的高度为
4
树的以下概念只需了解,在看书时只要知道是什么意思即可:
非终端结点或分支结点
:度不为
0
的结点; 如上图:
B
、
C
、
D
、
E...
等节点为分支结点
兄弟结点
:具有相同父结点的结点互称为兄弟结点; 如上图:
B
、
C
是兄弟结点
堂兄弟结点
:双亲在同一层的结点互为堂兄弟;如上图:G H
互为兄弟结点
结点的祖先
:从根到该结点所经分支上的所有结点;如上图:
A
是所有结点的祖先
子孙
:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是
A
的子孙
森林
:由
m
(
m>=0
)棵互不相交的树组成的集合称为森林
1.2树的表示形式
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:
双亲表示法
,
孩子表示法
、
孩子双亲表示法
、
孩子兄弟表示法
等等。我们这里就简单的了解其中最常用的
孩子兄弟表示法
。
class Node {int value ; // 树中存储的数据Node firstChild ; // 第一个孩子引用Node nextBrother ; // 下一个兄弟引用}
结构图
树的应用
文件系统管理(目录和文件)
2. 二叉树(重点)
2.1 概念
顾名思义,二叉树是度不大于2的树,二叉树是结点的一个有限集合,该集合:
- 或者为空
- 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
- 空树
- 只有根节点
- 只有左子树
- 只有右子树
- 左右子树均在
两种特殊的二叉树
1、
满二叉树
:
一棵二叉树,如果
每层的结点数都达到最大值,则这棵二叉树就是满二叉树
。也就是说,
如果一棵
二叉树的层数为
K
,且结点总数是
,则它就是满二叉树
。
2.、
完全二叉树
:
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为
K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0
至n-1
的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
加图理解:
2.2 二叉树的性质
1. 若规定
根结点的层数为
1
,则一棵
非空二叉树的第
i
层上最多有
(i>0)
个结点
2.
若规定只有
根结点的二叉树的深度为
1
,则
深度为
K的二叉树的最大结点数是(k>=0)
3.
对任何一棵二叉树
,
如果其
叶结点个数为
n0,
度为
2
的非叶结点个数为
n2,
则有
n0
=
n2
+
1
4.
具有
n
个结点的完全二叉树的深度
k
为
上取整
5.
对于具有
n
个结点的完全二叉树
,如果按照
从上至下从左至右的顺序对所有节点从
0
开始编号
,
则对于 序号为 i 的结点有 :若 i>0 , 双亲序号: (i-1)/2 ; i=0 , i 为根结点编号 ,无双亲结点若 2i+1<n ,左孩子序号: 2i+1 ,否则无左孩子若 2i+2<n ,右孩子序号: 2i+2
相关习题,练练手吧~
1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )A 不存在这样的二叉树B 200C 198D 1992. 在具有 2n 个结点的完全二叉树中,叶子结点个数为( )A nB n+1C n-1D n/23. 一个具有 767 个节点的完全二叉树,其叶子节点个数为()A 383B 384C 385D 3864. 一棵完全二叉树的节点数为 531 个,那么这棵树的高度为( )A 11B 10C 8D 12
答案:
1.B 2.A 3.B 4.B
2.3 二叉树的存储
二叉树的存储结构
分为:
顺序存储
和
类似于链表的链式存储
。
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式
,具体如下:
// 孩子表示法class Node {int val ; // 数据域Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树}// 孩子双亲表示法class Node {int val ; // 数据域Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树Node parent ; // 当前节点的根节点}
(本文采用孩子表示法)
并且二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
2.4 二叉树的遍历
前中后序遍历
学习二叉树结构,最简单的方式就是遍历。所谓
遍历
(Traversal)
是指沿着某条搜索路线,依次对树中每个结
点均做一次且仅做一次访问
。
访问结点所做的操作依赖于具体的应用问题
(
比如:打印节点内容、节点内容加
1)
。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
public void createBinaryTree(){ BTNode node1 = new BTNode(1); BTNode node1 = new BTNode(2); BTNode node1 = new BTNode(3); BTNode node1 = new BTNode(4); BTNode node1 = new BTNode(5); BTNode node1 = new BTNode(6); root = node1; node1.left = node2; node2.left = node3; node1.right = node4; node4.left = node5; node5.right = node6; }
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,
如果按
照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的
。如果
N
代表根节点,
L
代表根节点的 左子树,R
代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
- NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
- LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
- LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
下面主要分析前序递归遍历,中序与后序图解类似。
层序遍历:
层序遍历
:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在 层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第
2
层 上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
下面做选择题熟悉遍历三种方式
1. 某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为 ( )A: ABDHECFG B: ABCDEFGH C: HDBEAFCG D: HDEBFGCA2. 二叉树的先序遍历和中序遍历如下:先序遍历: EFHIGJK; 中序遍历: HFIEJKG. 则二叉树 根结点为 ()A: E B: F C: G D: H3.设一课二叉树的中序遍历序列: badce ,后序遍历序列: bdeca ,则二叉树前序遍历序列为 ()A: adbce B: decab C: debac D: abcde4. 某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出 ( 同一层从左到右 ) 的序列为 ()A: FEDCBA B: CBAFED C: DEFCBA D: ABCDEF
【参考答案】
1.A 2.A 3.D 4.A
2.5二叉树的基本操作
对于二叉树有以下常见操作,会在二叉树下篇经典面试题中讲解。
// 获取树中节点的个数int size ( Node root );// 获取叶子节点的个数int getLeafNodeCount ( Node root );// 子问题思路 - 求叶子结点个数// 获取第 K 层节点的个数int getKLevelNodeCount ( Node root , int k );// 获取二叉树的高度int getHeight ( Node root );// 检测值为 value 的元素是否存在Node find ( Node root , int val );// 层序遍历void levelOrder ( Node root );// 判断一棵树是不是完全二叉树boolean isCompleteTree ( Node root );
初始二叉树就到这里啦,刚了解二叉树概念性东西比较多,多看几遍就记住了。关注我,下篇讲解二叉树的多种遍历方式及多道经典面试题。不要错过喔
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » 【数据结构】二叉树(一)
发表评论 取消回复