实现几个函数来方便下载数据。

首先,建立字典DATA_HUB, 它可以将数据集名称的字符串映射到数据集相关的二元组上, 这个二元组包含数据集的url和验证文件完整性的sha-1密钥。 所有类似的数据集都托管在地址为DATA_URL的站点上。

import hashlib
import os
import tarfile
import zipfile
import requests

DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'

下面的download函数用来下载数据集, 将数据集缓存在本地目录(默认情况下为…/data)中, 并返回下载文件的名称。 如果缓存目录中已经存在此数据集文件,并且其sha-1与存储在DATA_HUB中的相匹配, 将使用缓存的文件,以避免重复的下载。

def download(name, cache_dir=os.path.join('..', 'data')):  #@save
    """下载一个DATA_HUB中的文件,返回本地文件名"""
    assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
    url, sha1_hash = DATA_HUB[name]
    os.makedirs(cache_dir, exist_ok=True)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname  # 命中缓存
    print(f'正在从{url}下载{fname}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname

还需实现两个实用函数: 一个将下载并解压缩一个zip或tar文件, 另一个是将数据集从DATA_HUB下载到缓存目录中。

def download_extract(name, folder=None):  #@save
    """下载并解压zip/tar文件"""
    fname = download(name)
    base_dir = os.path.dirname(fname)
    data_dir, ext = os.path.splitext(fname)
    if ext == '.zip':
        fp = zipfile.ZipFile(fname, 'r')
    elif ext in ('.tar', '.gz'):
        fp = tarfile.open(fname, 'r')
    else:
        assert False, '只有zip/tar文件可以被解压缩'
    fp.extractall(base_dir)
    return os.path.join(base_dir, folder) if folder else data_dir

def download_all():  #@save
    """下载DATA_HUB中的所有文件"""
    for name in DATA_HUB:
        download(name)

访问和读取数据集

# 如果没有安装pandas,请取消下一行的注释
# !pip install pandas

%matplotlib inline
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l

为方便起见,使用上面定义的脚本下载并缓存Kaggle房屋数据集。

DATA_HUB['kaggle_house_train'] = (  #@save
    DATA_URL + 'kaggle_house_pred_train.csv',
    '585e9cc93e70b39160e7921475f9bcd7d31219ce')

DATA_HUB['kaggle_house_test'] = (  #@save
    DATA_URL + 'kaggle_house_pred_test.csv',
    'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')

使用pandas分别加载包含训练数据和测试数据的两个CSV文件。

train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))

在这里插入图片描述

训练数据集包括1460个样本,每个样本80个特征和1个标签, 测试数据集包含1459个样本,每个样本80个特征。

print(train_data.shape)
print(test_data.shape)

(1460, 81)
(1459, 80)

查看前四个和最后两特征,以及相应标签(房价)

print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])

在这里插入图片描述
在每个样本中,第一个特征是ID, 这有助于模型识别每个训练样本。 虽然这很方便,但它不携带任何用于预测的信息。 因此,在将数据提供给模型之前,将其从数据集中删除。

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

数据预处理

在开始建模之前,需要对数据进行预处理。 首先,将所有缺失的值替换为相应特征的平均值。然后,为了将所有特征放在一个共同的尺度上, 通过将特征重新缩放到零均值和单位方差来标准化数据。
标准化数据有两个原因: 首先,它方便优化。 其次,因为不知道哪些特征是相关的, 所以不想让惩罚分配给一个特征的系数比分配给其他任何特征的系数更大。

# 若无法获得测试数据,则可根据训练数据计算均值和标准差
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(
    lambda x: (x - x.mean()) / (x.std()))
# 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)

接下来,我们处理离散值。 这包括诸如“MSZoning”之类的特征。 用独热编码替换它们, 方法与前面将多类别标签转换为向量的方式相同 (参见学习记录2-数据预处理)。 例如,“MSZoning”包含值“RL”和“Rm”。 将创建两个新的指示器特征“MSZoning_RL”和“MSZoning_RM”,其值为0或1。 根据独热编码,如果“MSZoning”的原始值为“RL”, 则:“MSZoning_RL”为1,“MSZoning_RM”为0。 pandas软件包会自动实现这一点。

# “Dummy_na=True”将“na”(缺失值)视为有效的特征值,并为其创建指示符特征
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape

(2919, 331)

可以看到此转换会将特征的总数量从79个增加到331个。 最后,通过values属性,我们可以 从pandas格式中提取NumPy格式,并将其转换为张量表示用于训练。

n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(
    train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)

训练

首先,训练一个带有损失平方的线性模型。 显然线性模型很难在竞赛中获胜,但线性模型提供了一种健全性检查, 以查看数据中是否存在有意义的信息。 如果在这里不能做得比随机猜测更好,那么很可能存在数据处理错误。 如果一切顺利,线性模型将作为基线(baseline)模型, 让我们直观地知道最好的模型有超出简单的模型多少。

loss = nn.MSELoss()
in_features = train_features.shape[1]

def get_net():
    net = nn.Sequential(nn.Linear(in_features,1))
    return net
def log_rmse(net, features, labels):
    # 为了在取对数时进一步稳定该值,将小于1的值设置为1
    clipped_preds = torch.clamp(net(features), 1, float('inf'))
    rmse = torch.sqrt(loss(torch.log(clipped_preds),
                           torch.log(labels)))
    return rmse.item()
def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    train_iter = d2l.load_array((train_features, train_labels), batch_size)
    # 这里使用的是Adam优化算法
    optimizer = torch.optim.Adam(net.parameters(),
                                 lr = learning_rate,
                                 weight_decay = weight_decay)
    for epoch in range(num_epochs):
        for X, y in train_iter:
            optimizer.zero_grad()
            l = loss(net(X), y)
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls

K折交叉验证

K折交叉验证, 它有助于模型选择和超参数调整。 首先需要定义一个函数,在
折交叉验证过程中返回第
折的数据。 具体地说,它选择第
个切片作为验证数据,其余部分作为训练数据。 注意,这并不是处理数据的最有效方法,如果数据集很大,会有其他解决办法。

def get_k_fold_data(k, i, X, y):
    assert k > 1
    fold_size = X.shape[0] // k
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]
        if j == i:
            X_valid, y_valid = X_part, y_part
        elif X_train is None:
            X_train, y_train = X_part, y_part
        else:
            X_train = torch.cat([X_train, X_part], 0)
            y_train = torch.cat([y_train, y_part], 0)
    return X_train, y_train, X_valid, y_valid

在K折交叉验证中训练k次后,返回训练和验证误差的平均值。

def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
           batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
                     xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
                     legend=['train', 'valid'], yscale='log')
        print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
              f'验证log rmse{float(valid_ls[-1]):f}')
    return train_l_sum / k, valid_l_sum / k

在本例中,选择了一组未调优的超参数,并将其留给读者来改进模型。 找到一组调优的超参数可能需要时间,这取决于一个人优化了多少变量。 有了足够大的数据集和合理设置的超参数,K折交叉验证往往对多次测试具有相当的稳定性。 然而,如果我们尝试了不合理的超参数,我们可能会发现验证效果不再代表真正的误差。

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,
                          weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
      f'平均验证log rmse: {float(valid_l):f}')

在这里插入图片描述
在这里插入图片描述
有时一组超参数的训练误差可能非常低,但K折交叉验证的误差要高得多, 这表明模型过拟合了。 在整个训练过程中,我们希望同时监控训练误差和验证误差。 较少的过拟合可能表明现有数据可以支撑一个更强大的模型, 较大的过拟合可能意味着需要通过正则化技术来改进。

封面图片来源

欢迎点击我的主页查看更多文章。
本人学习地址https://zh-v2.d2l.ai/
恳请大佬批评指正。

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部