参考资料:R语言实战【第2版】

        ANOVA(方差分析)和回归都是广义线性模型的特例,方差分析也都可以使用lm()函数来分析。

# 加载multcomp包
library(multcomp)
# 查看cholesterol数据集的处理水平
levels(cholesterol$trt)
# 用aov()函数拟合模型
fit.aov<-aov(response~trt,data=cholesterol)
summary(fit.aov)
# 用lm()函数拟合
fit.lm<-lm(response~trt,data=cholesterol)
summary(fit.lm)

        因为线性模型要求预测变量为数值型,当lm()函数碰到因子变量时,它会用一系列与因变量相对应的数值型对照变量来代替因子。如果因子变量有k个水平,将会创建k-1个对照变量。R语言提供了5种创建对照变量的内置方法(见下表),我们也可以选择默认,默认情况下,对照处理用于无序因子,正交多项式用于有序因子。

对照变量创建方法描述
contr.helmert第二个水平对照第一个水平,第三个水平对照前两个水平的均值,第四个水平对照前三个水平的均值,以此类推。
contr.poly基于正交多项式的对照,用于趋势分析(线性、二次、三次等)和等距水平的有序因子
contr.sum对照变量之和限制为0。也称作偏差找对,对各水平的聚酯与所有水平的均值进行比较
contr.treatment各水平对照基线水平(默认第一个水平),也称作虚拟编码
contr.SAS类似于contr.treatment,只是基线水平变成了最后一个水平。生成的系数类似于大部分SAS过程中使用的对照变量

        对对照(treatment contrast)为例,因子的第一个水平变成了参考组,随后的变量都以它为标准。可以通过contrasts()函数查看它编码过程。

        若患者处于drugD条件下,变量drugD等于1,其他变量2times、 4times和drugE都等于0。
无需列出第一组的变量值,因为其他四个变量都为0,这已经说明患者处于1time条件。
        在lm()的分析结果来看,变量trt2times表示水平1time和2times的一个对照。类似地,trt4times是1time和4times的一个对照,其余以此类推。从输出的概率值来看,各药物条件与第一组相比( 1time)显著不同。

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部