现有IoU问题点:IoU (Intersection over Union)作为模型训练的关键,极大地显示了当前预测框与Ground Truth框之间的差异。后续研究者不断在IoU中加入更多的考虑因素,如中心距离、纵横比等。然而,仅仅提炼几何差异是有上限的;而且新的对价指数与借据本身存在潜在的联系,两者之间的直接加减可能会导致“对价过高”的问题
本文独家改进:提出了一种新的IoU损失函数,称为统一IoU(Unified-IoU, UIoU),它更关注不同质量预测框之间的权重分配,该损失函数既考虑了预测盒与GT盒之间的几何关系,又考虑了IoU权值和置信度信息,充分利用了已知信息
在VOC2007数据集性能比较
《YOLOv10魔术师专栏》将从以下各个方向
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » YOLOv10涨点改进:IoU优化 | Unified-loU,用于高品质目标检测的统一loU ,2024年8月最新IoU
发表评论 取消回复