一、主要贡献
其实到了YOLOV5 基本创新点就不太多了,主要就是大家互相排列组合复用不同的网络模块、损失函数和样本匹配策略,需要注意YOLO V5、V8 V11 都是1个公司的,其余的个人建议看看V6美团的,剩下的了解就好。
V11支持多种视觉任务:物体检测、实例分割、图像分类、姿态估计和定向物体检测(OBB)。
Yolo v11 基本和YOLOV8同源,甚至git目前都是1个,部分代码注释还是YOLOV8的,所以建议先看我写的YOLOV8相关博客,对比YOLOV8主要涉及到:
*backbone 中的使用C2f模块 变为 c3k2 模块。
*backbone 中的最后一层(sppf层)后增加了C2PSA模块。
*head 解耦头中的分类检测头两个Conv 变为 DWConv。
整体技术而言:
*backbone 使用了C2K2模块+最后SPPF模块级联C2PSA模块;
*neck 使用PAN结构,并且里面也使用C3K2模块;
*head使用了anchor-free + Decoupled-head,其中回归头使用正常的卷积,分类头使用DWConv;
*损失函数使用了分类BCE、回归CIOU + VFL的组合;
*框匹配策略由静态匹配改为了Task-Aligned Assigner匹配方式;
*训练策略没有提及,其中YOLOV8可以参考如下最后 10 个 epoch 关闭 Mosaic 的操作、训练总 epoch 数从 300 提升到了 500。
PS
这篇有部分内容来自我的YOLOV8部分,目的是避免读者来回翻浪费时间。也建议大家先学习一下YOLOV8,感受技术进步(狗头)。
这篇主要讲检测部分,分类、分割部分后续再看需求编写。
目前241009看网上的博客,网络结构还没有画对的,尤其一系列付费博客画得离谱啊(还收费一百多块教你改进,这就。。。)
二、主要思路
整体的检测算法框架图如下(对应的是型号n,摘自cdsn-一勺汤,后面是自己画,细节大多数都画错了。。。。)。算法版本20241011 Tag 分支8.3.8同期的main分支(应该是8.3.0)。需要注意配合后面的配置文件来看,这里不同位置的C3K2参数是不一样的。
PS:这样的整体图怎么来的,是根据模型配置文件(左边是V8的,右边是V11的)+解析函数(来自nn文件夹下的task.py 的 parse_model 函数)来构建模型。只需要这个配置文件,就能梳理画出上面的整体框图。
配置文件:ultralytics/ultralytics/cfg/models/11/yolo11.yaml at main · ultralytics/ultralytics · GitHub
解析函数:ultralytics/ultralytics/nn/tasks.py at main · ultralytics/ultralytics · GitHub
三、具体细节
1、input
输入要求以及预处理,可选项比较多,可以参考这个配置文件:ultralytics/ultralytics/cfg/default.yaml at main · ultralytics/ultralytics · GitHub 的Hyperparameters 部分。
基础输入仍然为640*640。预处理就是熟悉的letterbox(根据参数配置可以为不同的缩放填充模式,主要用于resize到640)+ 转换rgb、chw、int8(0-255)->float(0-1),注意没有归一化操作。需要注意的是作者实现的mosaic和网上看到的不同,对比如下图(左边网上版本,右边是YOLO的实现)。并且作者添加了在最后10轮关闭mosaic增强(YOLOV8开始支持,具体原因个人的经验如我的这篇文章:yolov5 mosaic相关,关闭参数在 Train settings 部分的close_mosaic 选项)
2、backbone
主干网络以及改进
这里不去特意强调对比YOLOv5、V8等等的改进,因为各个系列都在疯狂演进,个人认为没必要花费时间看差异,着重看看一些比较重要的模块即可。源代码:
大多数模块:ultralytics/ultralytics/nn/modules/block.py at main · ultralytics/ultralytics · GitHub
head 部分:ultralytics/ultralytics/nn/modules/head.py at main · ultralytics/ultralytics · GitHub
串联模块构造网络:ultralytics/ultralytics/nn/tasks.py at main · ultralytics/ultralytics · GitHub
1)CBS 模块(后面叫做Conv)
就是pytorch 自带的conv + BN +SiLU,这里对应上面的配置文件的Conv 的 args 比如[64, 3, 2] 就是 conv2d 的c2=64、k=3、 s =2、c1 自动为上一层参数、p 为自动计算,真实需要计算scales 里面的with 和 max_channels 缩放系数。
这里连续使用两个3*3卷积stride为2的CBS模块直接横竖各降低了4倍分辨率(整体变为原来1/16)。这个还是比较猛的,敢在如此小的感受野下连续两次仅仅用一层卷积就下采样,当然作为代价它的特征图还是比较厚的分别为16、32。
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
2)c3k2 模块
Bottleneck
有两种结构,需要参数shortcut和两个conv的宽度是否相同来控制。
C3 & C3K
都是CSP bottleneck module with 3 convolutions, C3 代表3个卷积层, K代表其中bottleneck中的卷积核为支持自定义,其实这里c3k作者使用的默认的3*3卷积核也就等同于使用c3(c3是3*3卷积核)。
c2f & c3k2
其实也就是仿照YOLOv7 的ELAN 结构,通过更多的分支夸层链接,丰富了模型的梯度流。C3K2模块其实就是C2F模块转变出来的,它代码中有一个设置,就是当c3k这个参数为FALSE的时候,C3K2模块就是C2F模块,也就是说它的Bottleneck是普通的Bottleneck;反之当它为true的时候,将Bottleneck模块替换成C3K模块。模块中存在 Split 等操作对特定硬件部署没有之前那么友好了。需要针对自己的硬件进行测试看对最终推理速度的影响。
可视化关系如下,这里需要注意配置文件中的参数,比如21行[-1, 2, C3k2, [512, False, 0.25]] 512代表宽度、false代表是否使用shortcut、0.25代表c2f的宽度缩放。也就是第一个Conv的输出宽度。
源代码如下:
class Bottleneck(nn.Module):
"""Standard bottleneck."""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
"""Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
"""Applies the YOLO FPN to input data."""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
"""CSP Bottleneck with 3 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
def forward(self, x):
"""Forward pass through the CSP bottleneck with 2 convolutions."""
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
class C3k(C3):
"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
"""Initializes the C3k module with specified channels, number of layers, and configurations."""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
# self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
class C2f(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
"""Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x):
"""Forward pass through C2f layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def forward_split(self, x):
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
class C3k2(C2f):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
super().__init__(c1, c2, n, shortcut, g, e)
self.m = nn.ModuleList(
C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
)
3)sppf 模块
对比spp,将简单的并行max pooling 改为串行+并行的方式。对比如下(左边是SPP,右边是SPPF):
class SPPF(nn.Module):
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * 4, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
4)C2PSA 模块
C2PSA它结合了PSA(Pointwise Spatial Attention)块,用于增强特征提取和注意力机制。下面的图建议从左到右看,这样才能更有条理的理解,其实PSA个人感觉就是仿着VIT 的Attention来做的,是把输入C2PSA的特征图的h*w 看做VIT 的path数(也可以理解为NLP中token 个数),特征图的channel 数看做VIT特征维度(CNN的宽度,或者理解为NLP中token 编码后的特征维度),然后计算出QKV(这里需要注意第四幅图的QKV是值,不是操作,所以标注成了圆角矩形,这里是为了大家好理解),这里的Attention其实是在h*w维度计算空间Attention,个人感觉是强制给了全局感受野,并且并联了一个3*3的深度可分离卷积的单空间部分,就是仅在每一个特征图上进行3*3卷积,具体实现是通过pytorch conv2d 的 group参数设置为特征图的通道数。特别的关于Conv的参数分别为:输入通道数、输出通道数、卷积核尺寸、pad尺寸、group数、是否有激活函数(默认silu)。图中的最后一幅省略了一些细节,可以参考源码。
注意区别C2fPSA,C2fPSA才是对 C2f 模块的扩展,通过在标准 C2f 模块中引入 PSA 块,C2fPSA实现了更强大的注意力机制,从而提高了模型对重要特征的捕捉能力。作者实现了该模块但最终没有使用。
涉及的源码:
class Attention(nn.Module):
"""
Attention module that performs self-attention on the input tensor.
Args:
dim (int): The input tensor dimension.
num_heads (int): The number of attention heads.
attn_ratio (float): The ratio of the attention key dimension to the head dimension.
Attributes:
num_heads (int): The number of attention heads.
head_dim (int): The dimension of each attention head.
key_dim (int): The dimension of the attention key.
scale (float): The scaling factor for the attention scores.
qkv (Conv): Convolutional layer for computing the query, key, and value.
proj (Conv): Convolutional layer for projecting the attended values.
pe (Conv): Convolutional layer for positional encoding.
"""
def __init__(self, dim, num_heads=8, attn_ratio=0.5):
"""Initializes multi-head attention module with query, key, and value convolutions and positional encoding."""
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.key_dim = int(self.head_dim * attn_ratio)
self.scale = self.key_dim**-0.5
nh_kd = self.key_dim * num_heads
h = dim + nh_kd * 2
self.qkv = Conv(dim, h, 1, act=False)
self.proj = Conv(dim, dim, 1, act=False)
self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
def forward(self, x):
"""
Forward pass of the Attention module.
Args:
x (torch.Tensor): The input tensor.
Returns:
(torch.Tensor): The output tensor after self-attention.
"""
B, C, H, W = x.shape
N = H * W
qkv = self.qkv(x)
q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
[self.key_dim, self.key_dim, self.head_dim], dim=2
)
attn = (q.transpose(-2, -1) @ k) * self.scale
attn = attn.softmax(dim=-1)
x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
x = self.proj(x)
return x
class PSABlock(nn.Module):
"""
PSABlock class implementing a Position-Sensitive Attention block for neural networks.
This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
with optional shortcut connections.
Attributes:
attn (Attention): Multi-head attention module.
ffn (nn.Sequential): Feed-forward neural network module.
add (bool): Flag indicating whether to add shortcut connections.
Methods:
forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers.
Examples:
Create a PSABlock and perform a forward pass
>>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
>>> input_tensor = torch.randn(1, 128, 32, 32)
>>> output_tensor = psablock(input_tensor)
"""
def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None:
"""Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction."""
super().__init__()
self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
self.add = shortcut
def forward(self, x):
"""Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor."""
x = x + self.attn(x) if self.add else self.attn(x)
x = x + self.ffn(x) if self.add else self.ffn(x)
return x
class C2PSA(nn.Module):
"""
C2PSA module with attention mechanism for enhanced feature extraction and processing.
This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
Attributes:
c (int): Number of hidden channels.
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.
Methods:
forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
Notes:
This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
Examples:
>>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
>>> input_tensor = torch.randn(1, 256, 64, 64)
>>> output_tensor = c2psa(input_tensor)
"""
def __init__(self, c1, c2, n=1, e=0.5):
"""Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
super().__init__()
assert c1 == c2
self.c = int(c1 * e)
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv(2 * self.c, c1, 1)
self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
def forward(self, x):
"""Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
a, b = self.cv1(x).split((self.c, self.c), dim=1)
b = self.m(b)
return self.cv2(torch.cat((a, b), 1))
3、neck & head
1)检测头
YOLOV11 Head 部分和YOLOV8是近似的,所以简单对比YOLOV5、V8、V11。
如上面图,上边是YOLOV5 的结构,中是YOLOv8 的结构,下面是YOLOV11 结构
Yolov5: 检测和分类共用一个卷积(coupled head)并且是anchor based ,其 卷积输出为(5+N class)*3,其中 5为bbox 四个值(具体代表什么不同版本略有不同,官方git有说明,历史版本见 目标检测算法——YOLOV5 )+ 一个obj 值 (是否有目标,这个是从YOLO V1 传承下来的,个人感觉有点绕和不合理,并且后面取消),N class 为类别数,3为anchor 的数量,默认是3个。
YOLOv8:检测和分类的卷积是解耦的(decoupled),如中图,上面一条卷积支路是回归框,框的特征图channel为4*regmax,关于这个regmax 后面我们详细的解释,并不是anchor;分类的channel 为类别数。
YOLOV11:检测和分类的卷积是解耦的(decoupled),如右图,上面一条卷积支路是回归框,框的特征图channel为4*regmax,关于这个regmax 后面我们详细的解释,并不是anchor;分类的channel 为类别数,分类使用深度可分离卷积替代常规卷积降低计算量。
源码部分如下
class Detect(nn.Module):
"""YOLO Detect head for detection models."""
dynamic = False # force grid reconstruction
export = False # export mode
end2end = False # end2end
max_det = 300 # max_det
shape = None
anchors = torch.empty(0) # init
strides = torch.empty(0) # init
def __init__(self, nc=80, ch=()):
"""Initializes the YOLO detection layer with specified number of classes and channels."""
super().__init__()
self.nc = nc # number of classes
self.nl = len(ch) # number of detection layers
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
self.no = nc + self.reg_max * 4 # number of outputs per anchor
self.stride = torch.zeros(self.nl) # strides computed during build
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
)
self.cv3 = nn.ModuleList(
nn.Sequential(
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
nn.Conv2d(c3, self.nc, 1),
)
for x in ch
)
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
if self.end2end:
self.one2one_cv2 = copy.deepcopy(self.cv2)
self.one2one_cv3 = copy.deepcopy(self.cv3)
def forward(self, x):
"""Concatenates and returns predicted bounding boxes and class probabilities."""
if self.end2end:
return self.forward_end2end(x)
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
if self.training: # Training path
return x
y = self._inference(x)
return y if self.export else (y, x)
因此主要的变化可以认为有三个:(1)coupled head -> decoupled head ;(2)obj 分支消失;(3)anchor based——> anchor free ; 4) 深度可分离卷积。
(1)coupled head -> decoupled head
这个解耦操作,看YOLO x 的论文,约有1% 的提升。逻辑和实现都比较直观易懂,不再赘述。
(2)obj 分支消失;
这个其实我自己再看YOLO V1 的时候就有疑问,它存在的意义。后来人们发现,其实obj 的在训练和推理过程中存在逻辑不一致性。具体而言(摘自“https://zhuanlan.zhihu.com/p/147691786”)
A。用法不一致。训练的时候,分类和质量估计各自训练自个儿的,但测试的时候却又是乘在一起作为NMS score排序的依据,这个操作显然没有end-to-end,必然存在一定的gap。(个人认为还好,就是两个监督信号)
B。对象不一致。借助Focal Loss的力量,分类分支能够使得少量的正样本和大量的负样本一起成功训练,但是质量估计通常就只针对正样本训练。那么,对于one-stage的检测器而言,在做NMS score排序的时候,所有的样本都会将分类score和质量预测score相乘用于排序,那么必然会存在一部分分数较低的“负样本”的质量预测是没有在训练过程中有监督信号的,对于大量可能的负样本,他们的质量预测是一个未定义行为。这就很有可能引发这么一个情况:一个分类score相对低的真正的负样本,由于预测了一个不可信的极高的质量score,而导致它可能排到一个真正的正样本(分类score不够高且质量score相对低)的前面。问题一如图所示:
(3)anchor based——> anchor free
这里主要涉及怎么定义回归内容以及如何匹配GT框的问题。也就是如下:
2)匹配策略
A。回归的内容当前版本就是回归的lftp四个值(这四个值是距离匹配到的anchor 点的距离值!不是图片的绝对位置)。后面推理阶段通过 dist2bbox函数转换为需要的格式:
def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
"""Transform distance(ltrb) to box(xywh or xyxy)."""
lt, rb = torch.split(distance, 2, dim)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
if xywh:
c_xy = (x1y1 + x2y2) / 2
wh = x2y2 - x1y1
return torch.cat((c_xy, wh), dim) # xywh bbox
return torch.cat((x1y1, x2y2), dim) # xyxy bbox
B.匹配策略
YOLOv5 采用静态的匹配策略,V8采用了动态的TaskAlignedAssigner,其余常见的动态匹配还有: YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner。
TaskAligned使用分类得分和IoU的高阶组合来衡量Task-Alignment的程度。使用上面公式来对每个实例计算Anchor-level 的对齐程度:s 和 u 分别为分类得分和 IoU 值,α 和 β 为权重超参。t 可以同时控制分类得分和IoU 的优化来实现 Task-Alignment,可以引导网络动态的关注于高质量的Anchor。采用一种简单的分配规则选择训练样本:对每个实例,选择m个具有最大t值的Anchor作为正样本,选择其余的Anchor作为负样本。然后,通过损失函数(针对分类与定位的对齐而设计的损失函数)进行训练。
默认参数如下(当前版本这些超参没有提供修改的接口,如需修改需要在源码上进行修改):
4、loss function
损失函数设计
Loss 计算包括 2 个分支: 分类和回归分支,没有了之前的 objectness 分支。
分类分支依然采用 BCE Loss。回归分支使用了 Distribution Focal Loss(DFL Reg_max默认为16)+ CIoU Loss。3 个 Loss 采用一定权重比例加权即可(默认如下:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml#L83)。
这里重点介绍一下DFL损失。目前被广泛使用的bbox表示可以看作是对bbox方框坐标建模了单一的狄拉克分布。但是在复杂场景中,一些检测对象的边界并非十分明确。如下图左面所示,对于滑板左侧被水花模糊,引起对左边界的预测分布是任意而扁平的,对右边界的预测分布是明确而尖锐的。对于这个问题,有学者提出直接回归一个任意分布来建模边界框,使用softmax实现离散的回归,将狄拉克分布的积分形式推导到一般形式的积分形式来表示边界框。
狄拉克分布可以认为在一个点概率密度为无穷大,其他点概率密度为0,这是一种极端地认为离散的标签时绝对正确的。
因为标签是一个离散的点,如果把标签认为是绝对正确的目标,那么学习出的就是狄拉克分布,概率密度是一条尖锐的竖线。然而真实场景,物体边界并非是十分明确的,因此学习一个宽范围的分布更为合理。我们需要获得的分布虽然不再像狄拉克分布那么极端(只存在标签值),但也应该在标签值附近。因此学者提出Distribution Focal Loss损失函数,目的让网络快速聚焦到标签附近的数值,是标签处的概率密度尽量大。思想是使用交叉熵函数,来优化标签y附近左右两个位置的概率,是网络分布聚焦到标签值附近。如下公式。Si 是网络的sigmod 输出(因为真是是多分类,所以是softmax),yi 和 yi+1 是上图的区间顺序,y是label 值。
具体而言,针对我们将DFL的超参数Reg_max 设置为16的情况下:
A。训练阶段:我们以回归left为例:目标的label 转换为ltrb后,y = ( left - 匹配到的anchor 中心点 x 坐标)/ 当前的下采样倍数,假设求得3.2。那么i 就应该为3,yi = 3 ,yi+1 = 4。
B。推理阶段:因为没有label,直接将16个格子进行积分(离散变量为求和,也就是期望)结果就是最终的坐标偏移量(再乘以下采样倍数+ 匹配到的anchor的对应坐标)
DFL的实现方式其实就是一个卷积:ultralytics/ultralytics/nn/modules.py at cc3c774bde86ffce694d202b7383da6cc1721c1b · ultralytics/ultralytics · GitHub
NOTE:作者代码中的超参数Reg_max是写死的——16,并且代码内部做了强制截断到16,如果要修改需要修改源码,如果你的输入是640,最大下采样到20*20,那么16是够用的,如果输入没有resize或者超过了640一定要自己设置这个Reg_max参数,否则如果目标尺寸还大,将无法拟合到这个偏移量。 比如1280*1280的图片,目标1280*960,最大下采样32倍,1280/32/2=20 > 16(除以2是因为是一半的偏移量),超过了dfl 滑板右侧那个图的范围。至于为什么叫focal loss的变体,有兴趣看一下这个https://zhuanlan.zhihu.com/p/357415257和https://zhuanlan.zhihu.com/p/147691786就可以,这里不再赘述是因为,如果先看这些,很容易犯晕,反而抓不住DFL 我认为的重点(离散的分布形式)
class DFL(nn.Module):
# Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
def __init__(self, c1=16):
super().__init__()
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
x = torch.arange(c1, dtype=torch.float)
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
self.c1 = c1
def forward(self, x):
b, c, a = x.shape # batch, channels, anchors
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
PS
这里说一下整体loss是怎么串联的,不然确实有点绕。这里说的是训练过程!!!!
首先明确网络的输出是3个level分别预测大中小目标(可以粗暴这么理解),然后每个level的检测头有两个分支,分类的输出维度为类别数nc,检测的输出是4(ltrb)* 16 (dfl的reg max数),所以接下来的一切都是以这个为基础操作的。
先通过DFL 推理过程(其实就是上面的卷积实现的求期望),获得ltrb的真实值,然后转化为bbox的预测值,然后结合分类输出使用上述TaskAlignedAssigner匹配标注框和检测框。
然后计算对应的分类bce loss,DFL loss,此时注意IOU loss计算是通过DFL 的期望转化来的坐标计算的,并没有直接的网络输出值来回归!!!!
5、trics
单独训练trick或者重点重复概述上述所有trick
C3k2模块、C2PSA模块、Decoupled-Head、Anchor-Free、BCE Loss作为分类损失 VFL Loss + CIOU Loss作为回归损失、Task-Aligned Assigner匹配方式、最后 10 个 epoch 关闭 Mosaic 的操作。
6、inference
测试阶段(非训练阶段)过程,这个过程只涉及分类、DFL(期望求和过程)外加NMS,没有iou loss、task align过程。
可以参考:YOLOv8 深度详解!一文看懂,快速上手本文详细分析和总结了最新的 YOLOv8 算法,从整体设计到模型结构、Loss - 掘金 主要就是多了DFL的积分/求和/解码(其实上面解释过就是一个卷积操作)过程。
四、结果
算法结果
打赏
你的打赏是我不断分享的动力,羞羞。点这里,嘿嘿。
参考链接
YOLOv11训练自己的数据集,YOLOv11网络解析_yolov11 github-CSDN博客
YOLO11 沉浸式讲解 YOLOV11网络结构以及代码剖析-CSDN博客
YOLOv11 | 一文带你深入理解ultralytics最新作品yolov11的创新 | 训练、推理、验证、导出 (附网络结构图)-CSDN博客
YOLOv11训练自己的数据集,YOLOv11网络解析_yolov11 github-CSDN博客
https://i-blog.csdnimg.cn/direct/3d97b14552dd4bd8a5859ac46e80d372.png
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » 目标检测算法——YOLOV11——算法详解
发表评论 取消回复