文章目录
前言
在huggingface中,很多情况是使用LoRA方法来训练模型。有关LoRA训练获得权重与加载,以及如何LoRA继续resume训练等问题,尚未有一个较好文章说明。因此,本文将详细说明LoRA相关内容。首先介绍了LoRA(Low-Rank Adaptation)的原理及相关内容;其次也对训练相关各种模型权重、LoRA权重、配置文件、优化器、调度器以及训练器状态和随机状态保存方法;接着给出了关于LoRA训练与恢复方法Demo与介绍,包括LoraConfig配置文件介绍和PEFT的LoRA训练;并进一步解读huggingface训练期间的LoRA权重等内容加载源码解读;最后,给出训练完后LoRA权重如何与原始模型合并Demo,以此实现模型推理。而本文是给出LoRA训练Demo与LoRA的resume的Demo及LoRA合并推理和保存内容。
提示:huggingface的lora与resume训练原理与方法!
一、LoRA训练与Resume方法Demo
1、LoraConfig配置文件介绍
在训练之前,我们有必要解读下相关Lora的config文件配置,其源码如下:
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » huggingface的lora与resume方法训练模型(以BERT为列)
发表评论 取消回复