自旋锁简介

在并发编程中,互斥锁(Mutex)是一种常用的同步机制,用于保护临界资源,防止数据竞争。而在某些特定场景下,尤其是当锁的持有时间很短且线程数量有限的情况下,一种更为轻量级的锁——自旋锁(Spin Lock)可以提供更高的性能。

什么是自旋锁
自旋锁是一种忙等待锁,当一个线程尝试获取一个已经被其它线程持有的锁时,这个线程会持续循环检查锁的状态(即“自旋”) ,直到锁被释放后获得所有权。这种等待方式避免了线程上下文切换带来的开销,因此比较适用于锁竞争不激烈且锁定时间非常短的场景。

自旋锁原理
当一个线程尝试获取自旋锁时,如果发现锁已被占用,则该线程会进入一个循环,不断检查锁是否已被释放。一旦锁的持有者完成操作并释放锁后,正在自旋的线程即可立即获得锁并继续执行。

自旋锁的优缺点

避免了线程切换和调度的开销,持锁时间短性能好
持锁时间长或锁竞争频繁会导致CPU

如何选择合适的锁

如果不确定锁的持有时间,则选择互斥锁或者读写锁
如果确定锁的持有时间很短,则可以考虑使用自旋锁
如果读操作比较比多,则优先考虑读写锁

自旋锁实例

package main

import (
	"log"
	"sync"
	"sync/atomic"
)

func init() {
	log.SetFlags(log.LstdFlags)
}

type SpinLock struct {
	state int32
}

func (s *SpinLock) Lock() {
	for !atomic.CompareAndSwapInt32(&s.state, 0, 1) {
		//自旋,不执行任何操作
	}
}
func (s *SpinLock) unLock() {
	atomic.StoreInt32(&s.state, 0)
}
func main() {
	var cnt int
	spinLock := SpinLock{}
	wg := sync.WaitGroup{}

	for i := 0; i < 1000; i++ {
		wg.Add(1)
		go func() {
			spinLock.Lock()
			cnt++
			spinLock.unLock()
			wg.Done()
		}()
	}
	for i := 0; i < 1000; i++ {
		wg.Add(1)
		go func() {
			spinLock.Lock()
			cnt++
			spinLock.unLock()
			wg.Done()
		}()
	}
	wg.Wait()
	log.Println("cnt:", cnt)
}

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部