在这个例程中我们用类实现了节点、(无向图)连边、无向图,实现了节点度的计算、无向图聚类系数计算、度分布统计、无向图的Dijkstra算法(已知起止点计算最短路的算法)
#include <iostream>
#include<vector>
#include<set>
#include<unordered_map>
using namespace std;
class Edge
{
public:
int v1;
int v2;
int weight;
Edge(int v1, int v2, int w)
{
this->v1 = v1;
this->v2 = v2;
this->weight = w;
}
};
class DJPathInfo // 存放已知最短路
{
public:
vector<vector<int>> shortest_path;
vector<int> shortest_path_len;
DJPathInfo(int n)
{
vector<int> empty;
this->shortest_path=vector<vector<int>>(n, empty);
this->shortest_path_len= vector<int>(n, 0);
}
};
class Node
{
public:
std::vector<Edge> edges;
int id;
Node(int i)
{
this->id = i;
}
int degree()
{
return this->edges.size();
}
vector<int> neighbors()
{
vector<int> res;
if (this->edges.size() > 0)
{
for (auto edge : this->edges)
{
if (edge.v1 == this->id) res.push_back(edge.v2);
else res.push_back(edge.v1);
}
return res;
}
else return res;
}
float cluster_coeff(vector<vector<bool>> adj_mat)
{
int num_neighbor = this->edges.size() - 1;
if (num_neighbor < 2) return 0;
vector<int> neighbors = this->neighbors();
float E = 0; //邻居之间的边数
for (auto i : neighbors)
{
for (auto j : neighbors)
{
if (i >= j) continue;
if (adj_mat[i][j] == true) E++;
}
}
cout << 2 * E / (neighbors.size() * (neighbors.size() - 1)) << endl;
return 2 * E / (neighbors.size() * (neighbors.size() - 1));
}
};
class Graph
{
public:
vector<vector<bool>> adj_mat;
vector<vector<float>> w_mat;
int node_num;
vector<Edge> edges;
vector<Node> nodes;
Graph(vector<vector<bool>> A, vector<vector<float>> W)
{
this->adj_mat = A;
this->w_mat = W;
this->node_num = A.size();
for (int i = 0; i < node_num; i++) this->nodes.push_back(Node(i));
for (int i = 0; i < node_num; i++)
for (int j = 0; j < i; j++)
{
if (A[i][j] == true) this->add_edge(i, j, W[i][j]);
}
}
Graph(int n)
{
vector<float> zero(n, 0);
vector<bool> all_false(n, false);
vector<vector<bool>> A(n, all_false);
vector<vector<float>> W(n, zero);
this->adj_mat = A;
this->w_mat = W;
this->node_num = A.size();
for (int i = 0; i < node_num; i++) this->nodes.push_back(Node(i));
for (int i = 0; i < node_num; i++)
for (int j = 0; j < i; j++)
{
if (A[i][j] == true) this->add_edge(i, j, W[i][j]);
}
}
void add_edge(int id1, int id2, int weight)
{
Edge e = Edge(id1, id2, weight);
this->adj_mat[id1][id2] = true;
this->adj_mat[id2][id1] = true;
this->w_mat[id1][id2] = weight;
this->w_mat[id2][id1] = weight;
this->edges.push_back(e);
this->nodes[id1].edges.push_back(e);
this->nodes[id2].edges.push_back(e);
}
void tell_info()
{
for (auto v : this->nodes)
{
std::cout << "Node ID:" << v.id << std::endl;
std::cout << "Neighbor/Weight:";
for (auto i : v.neighbors()) cout <<'(' << i<<','<< this->w_mat[v.id][i] << ')' << ',';
std::cout<<std::endl;
}
}
vector<int> DJ(int s, int dest) // Dijkstra算法
{
DJPathInfo info(this->nodes.size());
vector<int> res = {s};
set<int> S;
S.insert(s);
set<int> U;
for (auto v : this->nodes[s].neighbors()) U.insert(v);
if (U.size() == 0) return res;
for (auto v : U)
{
info.shortest_path[v].push_back(v);
info.shortest_path_len[v] = this->w_mat[s][v];
}
info.shortest_path_len[s] = 0;
while (U.size() != 0)
{
int n = *U.begin();
int n_len = info.shortest_path_len[n];
for (auto it = U.begin(); it != U.end(); it++)
{
if (info.shortest_path_len[n] > info.shortest_path_len[*it])
{
n = *it;
n_len = info.shortest_path_len[*it];
}
}
S.insert(n);
U.erase(n);
for (auto v : this->nodes[n].neighbors())
{
if (S.find(v) != S.end()) continue;
U.insert(v);
if (info.shortest_path[v].size() == 0)
{
info.shortest_path[v] = info.shortest_path[n];
info.shortest_path[v].push_back(v);
info.shortest_path_len[v] = info.shortest_path_len[n] + this->w_mat[n][v];
continue;
}
if (info.shortest_path_len[n] + this->w_mat[n][v] < info.shortest_path_len[v])
{
info.shortest_path[v] = info.shortest_path[n];
info.shortest_path[v].push_back(v);
info.shortest_path_len[v] = info.shortest_path_len[n] + this->w_mat[n][v];
}
}
}
if (S.find(dest) != S.end())
{
for (auto v : info.shortest_path[dest]) res.push_back(v);
info.shortest_path_len[dest];
}
return res;
}
float cluster_coeff()
{
float res=0;
for (auto node : this->nodes) res += node.cluster_coeff(this->adj_mat);
return res / float(this->nodes.size());
}
void degree_distribution() // 度分布
{
vector<float> res;
unordered_map<int, int> degree_count;
for (auto v : this->nodes)
{
degree_count.emplace(v.degree(), 0);
}
for (auto v : this->nodes)
{
degree_count[v.degree()]++;
}
for (auto it : degree_count)
{
std::cout << "degree =" << it.first << ', '<<" prob=" << float(it.second) / this->nodes.size() << endl;
}
}
};
int main()
{
Graph G = Graph(11);
G.add_edge(0, 1, 2);
G.add_edge(0, 2, 9);
G.add_edge(0, 3, 1);
G.add_edge(1, 4, 1);
G.add_edge(1, 2, 6);
G.add_edge(2, 4, 5);
G.add_edge(2, 5, 1);
G.add_edge(2, 6, 2);
G.add_edge(2, 3, 7);
G.add_edge(3, 6, 9);
G.add_edge(4, 7, 2);
G.add_edge(4, 8, 9);
G.add_edge(4, 5, 3);
G.add_edge(5, 8, 6);
G.add_edge(5, 6, 4);
G.add_edge(6, 8, 3);
G.add_edge(6, 9, 1);
G.add_edge(7, 8, 7);
G.add_edge(7, 10, 9);
G.add_edge(8, 10, 2);
G.add_edge(8, 9, 1);
G.add_edge(9, 10, 4);
G.tell_info();
cout << "Djkstra Test: shortest 0 -> 10: ";
for (const auto& p : G.DJ(0, 10)) cout << p << ',';
cout<<endl;
cout << "clustring coefficient=" << G.cluster_coeff() << endl;
cout << "degree distribution:" << endl;
G.degree_distribution();
return 0;
}
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » 【图论】图的C++实现代码
发表评论 取消回复