为了求解某个函数 ( E(x) ),可以使用两种方法:先求积分再求导,或者先求导再求积分。这里我们以数列求和公式为例,分别介绍这两种方法。

1. 先求积分再求导

假设我们有一个函数 ( f(x) ) 的级数展开:

E ( x ) = ∑ n = 1 ∞ a n x n E(x) = \sum_{n=1}^{\infty} a_n x^n E(x)=n=1anxn

我们可以通过对 ( E(x) ) 进行积分,再求导来得到 ( E(x) )。

(1) 对 ( E(x) ) 积分

定义一个新函数 ( F(x) ):

F ( x ) = ∫ E ( x )   d x = ∫ ∑ n = 1 ∞ a n x n   d x F(x) = \int E(x) \, dx = \int \sum_{n=1}^{\infty} a_n x^n \, dx F(x)=E(x)dx=n=1anxndx

交换积分和求和次序:

F ( x ) = ∑ n = 1 ∞ a n ∫ x n   d x F(x) = \sum_{n=1}^{\infty} a_n \int x^n \, dx F(x)=n=1anxndx

计算积分:

∫ x n   d x = x n + 1 n + 1 \int x^n \, dx = \frac{x^{n+1}}{n+1} xndx=n+1xn+1

所以,

F ( x ) = ∑ n = 1 ∞ a n x n + 1 n + 1 F(x) = \sum_{n=1}^{\infty} a_n \frac{x^{n+1}}{n+1} F(x)=n=1ann+1xn+1

(2) 对 ( F(x) ) 求导

我们现在对 ( F(x) ) 求导:

E ( x ) = d d x F ( x ) = d d x ∑ n = 1 ∞ a n x n + 1 n + 1 E(x) = \frac{d}{dx} F(x) = \frac{d}{dx} \sum_{n=1}^{\infty} a_n \frac{x^{n+1}}{n+1} E(x)=dxdF(x)=dxdn=1ann+1xn+1

交换求导和求和次序:

E ( x ) = ∑ n = 1 ∞ a n d d x ( x n + 1 n + 1 ) E(x) = \sum_{n=1}^{\infty} a_n \frac{d}{dx} \left( \frac{x^{n+1}}{n+1} \right) E(x)=n=1andxd(n+1xn+1)

计算导数:

d d x ( x n + 1 n + 1 ) = ( n + 1 ) x n n + 1 = x n \frac{d}{dx} \left( \frac{x^{n+1}}{n+1} \right) = \frac{(n+1) x^n}{n+1} = x^n dxd(n+1xn+1)=n+1(n+1)xn=xn

所以,

E ( x ) = ∑ n = 1 ∞ a n x n E(x) = \sum_{n=1}^{\infty} a_n x^n E(x)=n=1anxn

这验证了我们的结果。

2. 先求导再求积分

我们也可以通过先对 ( E(x) ) 求导,再对导函数进行积分来得到 ( E(x) )。

(1) 对 ( E(x) ) 求导

对 ( E(x) ) 求导:

E ′ ( x ) = d d x ( ∑ n = 1 ∞ a n x n ) E'(x) = \frac{d}{dx} \left( \sum_{n=1}^{\infty} a_n x^n \right) E(x)=dxd(n=1anxn)

交换求导和求和次序:

E ′ ( x ) = ∑ n = 1 ∞ a n d d x ( x n ) E'(x) = \sum_{n=1}^{\infty} a_n \frac{d}{dx} (x^n) E(x)=n=1andxd(xn)

计算导数:

d d x ( x n ) = n x n − 1 \frac{d}{dx} (x^n) = n x^{n-1} dxd(xn)=nxn1

所以,

E ′ ( x ) = ∑ n = 1 ∞ a n n x n − 1 E'(x) = \sum_{n=1}^{\infty} a_n n x^{n-1} E(x)=n=1annxn1

(2) 对 ( E’(x) ) 积分

现在对 ( E’(x) ) 积分:

E ( x ) = ∫ E ′ ( x )   d x = ∫ ∑ n = 1 ∞ a n n x n − 1   d x E(x) = \int E'(x) \, dx = \int \sum_{n=1}^{\infty} a_n n x^{n-1} \, dx E(x)=E(x)dx=n=1annxn1dx

交换积分和求和次序:

E ( x ) = ∑ n = 1 ∞ a n n ∫ x n − 1   d x E(x) = \sum_{n=1}^{\infty} a_n n \int x^{n-1} \, dx E(x)=n=1annxn1dx

计算积分:

∫ x n − 1   d x = x n n \int x^{n-1} \, dx = \frac{x^n}{n} xn1dx=nxn

所以,

E ( x ) = ∑ n = 1 ∞ a n n x n n = ∑ n = 1 ∞ a n x n E(x) = \sum_{n=1}^{\infty} a_n n \frac{x^n}{n} = \sum_{n=1}^{\infty} a_n x^n E(x)=n=1annnxn=n=1anxn

这验证了我们的结果。

通过这两种方法,我们可以得到同样的函数 ( E(x) ),即:

E ( x ) = ∑ n = 1 ∞ a n x n E(x) = \sum_{n=1}^{\infty} a_n x^n E(x)=n=1anxn

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部