测试 Flink 作业
a)JUnit 规则 MiniClusterWithClientResource

Apache Flink 提供了一个名为 MiniClusterWithClientResource 的 Junit 规则,用于针对本地嵌入式小型集群测试完整的作业。 叫做 MiniClusterWithClientResource.

要使用 MiniClusterWithClientResource,需要添加一个额外的依赖项(测试范围)。

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-test-utils</artifactId>
    <version>1.19.0</version>    
    <scope>test</scope>
</dependency>

示例:MapFunction

public class IncrementMapFunction implements MapFunction<Long, Long> {

    @Override
    public Long map(Long record) throws Exception {
        return record + 1;
    }
}

在本地 Flink 集群使用这个 MapFunction 的简单 pipeline,如下所示。

public class ExampleIntegrationTest {

     @ClassRule
     public static MiniClusterWithClientResource flinkCluster =
         new MiniClusterWithClientResource(
             new MiniClusterResourceConfiguration.Builder()
                 .setNumberSlotsPerTaskManager(2)
                 .setNumberTaskManagers(1)
                 .build());

    @Test
    public void testIncrementPipeline() throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // configure your test environment
        env.setParallelism(2);

        // values are collected in a static variable
        CollectSink.values.clear();

        // create a stream of custom elements and apply transformations
        env.fromElements(1L, 21L, 22L)
                .map(new IncrementMapFunction())
                .addSink(new CollectSink());

        // execute
        env.execute();

        // verify your results
        assertTrue(CollectSink.values.containsAll(2L, 22L, 23L));
    }

    // create a testing sink
    private static class CollectSink implements SinkFunction<Long> {

        // must be static
        public static final List<Long> values = Collections.synchronizedList(new ArrayList<>());

        @Override
        public void invoke(Long value, SinkFunction.Context context) throws Exception {
            values.add(value);
        }
    }
}

使用 MiniClusterWithClientResource 进行集成测试的注意

  • 为了不将整个 pipeline 代码从生产复制到测试,请将 source 和 sink 在生产代码中设置成可插拔的,并在测试中注入特殊的测试 source 和测试 sink。
  • 这里使用 CollectSink 中的静态变量,是因为Flink 在将所有算子分布到整个集群之前先对其进行了序列化。 解决此问题的一种方法是与本地 Flink 小型集群通过实例化算子的静态变量进行通信。 或者,可以使用测试的 sink 将数据写入临时目录的文件中。
  • 如果作业使用事件时间定时器,则可以实现自定义的 并行 源函数来发出 watermark。
  • 建议始终以 parallelism > 1 的方式在本地测试 pipeline,以识别只有在并行执行 pipeline 时才会出现的 bug。
  • 优先使用 @ClassRule 而不是 @Rule,这样多个测试可以共享同一个 Flink 集群。可以节省大量的时间,因为 Flink 集群的启动和关闭通常会占用实际测试的执行时间。
  • 如果 pipeline 包含自定义状态处理,则可以通过启用 checkpoint 并在小型集群中重新启动作业来测试其正确性。为此,需要在 pipeline 中(仅测试)抛出用户自定义函数的异常来触发失败。

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部