题目介绍
题解
思路分析:
- 确定dp数组以及下标的含义:dp[i]: 爬到第i层楼梯,有dp[i]种方法
- 确定递推公式:从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。所以dp[i] = dp[i - 1] + dp[i - 2]。
- dp数组初始化:dp[1] = 1,dp[2] = 2
- 确定遍历顺序:从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的。
- 举例推导dp数组:从上图也可以看出来
代码实现:
n是大于等于1的
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
本站资源均来自互联网,仅供研究学习,禁止违法使用和商用,产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
转载请注明出处: 免费源码网-免费的源码资源网站 » 力扣 简单 70.爬楼梯
发表评论 取消回复